NVIRT Overwew ~;_ ~
Presented at I3D’09: i

Austin Robison

<A NVIDIA.

Rasterization & Ray Tracing <3

nvibDiA

Rasterization Classical Ray Tracing
® For each triangle ® For each pixel
* Find the pixels it covers ® Find the triangles that
® For each pixel: compare might be closest
to closest triangle so far ® For each triangle:
compute distance to
pixel

»

I~

Common Myths >

nvibDiA

Rasterization is linear in primitives
Ray Tracing is sublinear in primitives
® Rasterization uses LODs and occlusion query

Rasterization is sublinear in pixels
Ray Tracing is linear in pixels
® Ray Tracing uses packets and frustum culling

Rasterization is ugly

Ray Tracing is clean
® They’re both ugly

Rasterization vs. Ray Tracing <3

NVIDIA

Rasterization Ray Tracing

+ Fast + Robustly supports

— Needs cleverness to complex visual effects

support complex visual — Needs cleverness to be
effects fast

Interactive Hybrid Rendering <3

nvibia

|4444ﬂﬂﬂﬂﬂ4444444%

100% Rasterization 100% Ray Traced

N1 7

Sweet Spots

Industrial Strength Ray Tracing <3

nVIDIA
® mental images is market leader for physically correct
ray tracing software

® Applicable in numerous markets: automotive,
design, architecture, film

Why GPU Ray Tracing? S

NVIDIA

* Abundant parallelism, massive computational power
® GPUs excel at shading

® Opportunity for hybrid algorithms

GPUs are fast and are getting faster <3

nvibia

1000 -

-~-NVIDIA GPU Intel CPU

~
Ul
o

Peak GFLOP/s

Sep-02 Jan-04 May-05 Oct-06 Feb-08

NVIDIA SIGGRAPH 2008 Demo <X

nvibDiA

* NVSG-driven animation and interaction
* Programmable Shading
® Modeled in Maya, imported via COLLADA

* Fully Ray Traced
| !E N’

|
f
N |
q ||
"
i

’m‘h
2 million polygons
Bump-mapping
Movable light source
5 bounce reflection/refraction

Adaptive antlallasmg P

Introducing... <3

NVIRT

The NVIDIA Interactive Ray Tracing API

i T
oK

8 1

NVIRT Design Goals <3

nvibDiA

Low Level, High Performance API
NVIRT is not a renderer

Can be used for rendering, baking, collision detection,
Al queries, etc.

* Programmability

In addition to programmable surface shading, provide
programmable ray generation, intersection, etc.

Program as if it were single ray code (no packets)

* Abstract traversal implementation

The best way to write a ray tracer may change on different
generations of hardware

Automated parallelization

The Ray Tracing Pipeline <X

NVIDIA.

Buffers

lexture samplers

variaples

Closest Hit and Any Hit Programs <3

nVIDIA

P~

* Any Hit Programs are called during traversal for each
potentially closest intersection
® Transparency without traversal restart: rtignoreintersection()

Terminating shadow rays when they encounter opaque
objects: rtTerminateRay()

* Closest Hit Programs are called once after traversal
has found the closest intersection
® Used for traditional surface shading

-

* Both can be used for shading by modifying per ray state

Overview — API Objects <3

NVIDIA.

Program

Group

GeometryGroup

) context

Transform Geometryinstance

putrer Geometry

Viaterie
mpler viaterial

API Objects — Context <X

nvibnia

® Manages API Object State
®* Program Loading Context
* Validation and Compilation

® Manages Acceleration Structures
* Building and Updating

® Provides Entry Points into the system
* rtContextTracelD()
* rtContextTrace2D()
* rtContextTrace3D()

<3

NVIDIA.

Entry Points and Ray Types

context

Entry Points and Ray Types Cont’d <3

NVIDIA.

viaterial

Ray Shading

APl Objects — Nodes

®* Nodes contain children
® Other nodes Group
® Geometry instances

nvibnia

: GeometryGroup
® Transforms hold matrices

® Applied to all children
Iranstorm

® Selectors have Visit programs

* Provide programmable selection
of children

Similar to “switch nodes”
® Can implement LOD systems

® Acceleration Structures
® Builds over children of attached node

The Object Hierarchy <3

NVIDIA.

Not a scene graph!

Deformable Objects <3

NVIDIA.

ScOllicl j]li'11_<‘lil,‘,.

,':ulllv.Uj,iuu})

API| Objects — Geometry <3

nvibnia

® Geometrylnstance references:
® Geometry object

® A collection of Materials
* Indexed by argument from intersection

Geometrylnstanc

¢ Geometry
® A collection of primitives
® Intersection Program
® Bounding Box Program

® Material
* Any Hit Program
® Closest Hit Program

APl Objects — Data Management <3

nvibDiA

® Supports 1D, 2D and 3D buffers
* Buffer formats

* RT_FORMAT_FLOAT3
RT_FORMAT_UNSIGNED_BYTE4 Buffer

&
* RT _FORMAT USER
&

etc. Texturesampler

¢ 3D API Interoperability
® e.g.create buffers from OpenGL buffer objects

* TextureSamplers reference Buffers
® Attach buffers to MIP levels, array slices, etc.

APl Objects — Programmability <3

nvibDiA

® Runs on CUDA
® Cg-like vectors plus pointers Frogram

® Uses CUDA virtual assembly language
® Cwrapper for use with NVCC compiler

® Implements recursion and dynamic dispatch
® Intrinsic functions: rtTrace(), rtReportintersection(), etc.

® Programs reference variables by name

® Variables are defined by
& Static initializers
¢ Binding to API Objects in the hierarchy

<3

NVIDIA.

Variable Scoping Rules

context

Derinition:
Color =red

<3

NVIDIA.

Variable Scoping Rules Cont’d

context

peTtinition:
Color = blue

Per Ray Data and Attributes <X

NVIDIA

¢ Per Ray Data
® User-defined struct attached to rays
®# Can be used to pass data up and down the ray tree
® Varies per Ray Type

® Arbitrary Attributes
® Produced by Intersection Programs
Consumed by Any Hit and Closest Hit Programs

Program Example — Pinhole Camera <3

nvibDia
struct PerRayData radiance RT PROGRAM void pinhole camera ()
{ {
float3 result; uint2 screen = output buffer.size();
float importance; uint2 index =
int depth; make uint2 (rayIndex.get());

}s
float2 d = make float2(index) /
make float2(screen) * 2.f - 1.f;

float3 ray origin = eye;

rtDeclareVariable (float3, eye);
rtDeclareVariable (float3, U);
rtDeclareVariable (float3, V),
rtDeclareVariable (float3, W),
rtBuffer<floatd4, 2> output buffer;
rtDeclareVariable (rtNode, top object);

float3 ray direction =
normalize (d.x*U + d.y*V + W) ;

Ray ray = make ray(ray origin,
ray direction, radiance_ ray type,
rtDeclareVariable (unsigned int, scene epsilon, RT DEFAULT MAX) ;
radiance ray type);

PerRayData radiance prd;
rtDeclareSemanticVariable (rtRayIndex,

prd.importance = 1.f;
rayIndex) ;

prd.depth = 0;

rtTrace (top_object, ray, prd);
output buffer[index] = prd.result;

Program Example - Attributes <X

nviDIA
Sphere Intersection Normal Visualization Shader
rtDeclareAttribute (float3, normal) ; rtDeclareAttribute (float3, normal) ;
RT PROGRAM void intersect(int primIdx) rtDeclareRayData (PerRayData radiance,

{ prd radiance) ;

if (rtPotentialIntersection(rootl)) RT_PROGRAM void closest_hit radiance()
{ {
normal = (O + rootl*D)/radius; PerRayData radianceé& prd =
if (rtReportIntersection (0)) prd_radiance.reference() ;
} prd.result = normal*0.5f + 0.5f;

Execution Flow <X

nvibnia

Closest HiIt

ANY HIt

An Example — Whitted’s Scene <X

NVIDIA.

Whitted’s Scene — Context Setup <3

nvibnia

struct PerRayData radiance

{
float3 result;

float importance;
int depth;

Context

};

struct PerRayData shadow

{

float attenuation;

};

Whitted’s Scene — Object Hierarchy <3

NVIDIA.
Camera |

“

An Example — Hybrid Hard Shadows &

nvibDiA

Hybrid Hard Shadows - Pipeline <3

nvibnia

1. Rasterize shadow ray
requests with OpenGL

2. Trace shadow rays against
scene geometry

OpenGL 3. Use NVIRT output during
' OpenGL shading

Hybrid Hard Shadows — Ray
Generation Program

* Rasterize world space positions to FBO
* Send NVIRT output to texture and render

RT PROGRAM void shadow request()

{

uint2 index = make uint2(ray index.get())

float3 ray origin = request buffer[index];
PerRayData shadow prd;
1;

if('isnan(ray origin.x)) {

prd.intensity

float3 ray direction = normalize(light pos-ray origin);

=

nvibDiA

Ray ray = make_ ray(ray origin, ray direction, shadow_ray type,

scene_epsilon, RT DEFAULT MAX) ;
rtTrace (shadow casters, ray, prd);

}

shadow buffer[index] = prd.intensity;

NVIRT Wrap-up <3

nvibDiA

NVIRT is not a renderer

Can but used to implement a renderer, collision detection,
baking, etc.

Programmable Ray Tracing Pipeline
Intersection
Shading
¢ Traversal

* Abstract Tracing mechanism can take advantage of
future NVIDIA hardware

No need to change your code

NVIRT SDK Public Beta <X

nvibia

Available this spring from http://www.nvidia.com

Next NVSG release will include NVIRT based renderer

http://www.nvidia.com/

>

nvibia

Questions?

arobison@nvidia.com

http://www.nvidia.com

mailto:arobison@nvidia.com
http://www.nvidia.com/
http://www.nvidia.com/
http://www.nvidia.com/

