
Interactive Ray Tracing

on the GPU and

NVIRT Overview
Presented at I3D’09

Austin Robison

Rasterization & Ray Tracing

Rasterization

For each triangle

Find the pixels it covers

For each pixel: compare

to closest triangle so far

Classical Ray Tracing

For each pixel

Find the triangles that

might be closest

For each triangle:

compute distance to

pixel

Common Myths

Rasterization is linear in primitives

Ray Tracing is sublinear in primitives

Rasterization uses LODs and occlusion query

Rasterization is sublinear in pixels

Ray Tracing is linear in pixels

Ray Tracing uses packets and frustum culling

Rasterization is ugly

Ray Tracing is clean

They’re both ugly

Rasterization vs. Ray Tracing

Rasterization

+ Fast

– Needs cleverness to

support complex visual

effects

Ray Tracing

+ Robustly supports

complex visual effects

– Needs cleverness to be

fast

Interactive Hybrid Rendering

100% Rasterization 100% Ray Traced

Sweet Spots

Industrial Strength Ray Tracing

mental images is market leader for physically correct

ray tracing software

Applicable in numerous markets: automotive,

design, architecture, film

Why GPU Ray Tracing?

Abundant parallelism, massive computational power

GPUs excel at shading

Opportunity for hybrid algorithms

GPUs are fast and are getting faster

0

250

500

750

1000

Sep-02 Jan-04 May-05 Oct-06 Feb-08

P
e
a
k
 G

F
L
O

P
/s

NVIDIA GPU Intel CPU

NVIDIA SIGGRAPH 2008 Demo

NVSG-driven animation and interaction

Programmable Shading

Modeled in Maya, imported via COLLADA

Fully Ray Traced

2 million polygons

Bump-mapping

Movable light source

5 bounce reflection/refraction

Adaptive antialiasing

Introducing…

NVIRT Design Goals

Low Level, High Performance API

NVIRT is not a renderer

Can be used for rendering, baking, collision detection,

AI queries, etc.

Programmability

In addition to programmable surface shading, provide

programmable ray generation, intersection, etc.

Program as if it were single ray code (no packets)

Abstract traversal implementation

The best way to write a ray tracer may change on different

generations of hardware

Automated parallelization

Entry Points

Ray Shading

Traversal

The Ray Tracing Pipeline

Host

Ray Generation Program

Intersection Program

Any Hit Program

Closest Hit Program

Selector Visit Program

Trace

Miss Program

Exception Program

Buffers

Texture Samplers

Variables

Closest Hit and Any Hit Programs

Any Hit Programs are called during traversal for each

potentially closest intersection

Transparency without traversal restart: rtIgnoreIntersection()

Terminating shadow rays when they encounter opaque

objects: rtTerminateRay()

Closest Hit Programs are called once after traversal

has found the closest intersection

Used for traditional surface shading

Both can be used for shading by modifying per ray state

Overview – API Objects

Context

GeometryInstance

Geometry

Material

Buffer

TextureSampler

Program

Variable

Group

GeometryGroup

Transform

Selector

Acceleration

Manages API Object State

Program Loading

Validation and Compilation

Manages Acceleration Structures

Building and Updating

Provides Entry Points into the system

rtContextTrace1D()

rtContextTrace2D()

rtContextTrace3D()

API Objects – Context

Ray Gen Programs

Exception Programs

Miss Programs

User Variables

Context

Context

Entry Point 1 Entry Point 2

Entry Points and Ray Types

Ray Generation 1 Ray Generation 2

Trace

Exception 1 Exception 2

Entry Points and Ray Types Cont’d

Trace

Ray Shading

Material Programs

Material

Closest Hit Any Hit

Closest Hit Any Hit

Closest Hit Any Hit

Closest Hit Any Hit

Ray Type

0

1

2

3

API Objects – Nodes

Nodes contain children

Other nodes

Geometry instances

Transforms hold matrices

Applied to all children

Selectors have Visit programs

Provide programmable selection

of children

Similar to “switch nodes”

Can implement LOD systems

Acceleration Structures

Builds over children of attached node

Group

GeometryGroup

Transform

Selector

Acceleration

The Object Hierarchy

Not a scene graph!

Context Group

GeometryGroup

GeometryInstance

GeometryInstance

GeometryInstance

GeometryGroup
GeometryInstance

Deformable Objects

Context Group

Acceleration

GeometryGroup

GeometryInstance

1. Primitives

Deform

2. Groups and

Acceleration Marked

Dirty

3. Context updates

Acceleration

structures

API Objects – Geometry

GeometryInstance references:

Geometry object

A collection of Materials

Indexed by argument from intersection

Geometry

A collection of primitives

Intersection Program

Bounding Box Program

Material

Any Hit Program

Closest Hit Program

Geometry Material

GeometryInstance

Material

Material

API Objects – Data Management

Supports 1D, 2D and 3D buffers

Buffer formats

RT_FORMAT_FLOAT3

RT_FORMAT_UNSIGNED_BYTE4

RT_FORMAT_USER

etc.

3D API Interoperability

e.g. create buffers from OpenGL buffer objects

TextureSamplers reference Buffers

Attach buffers to MIP levels, array slices, etc.

Buffer

TextureSampler

API Objects – Programmability

Runs on CUDA

Cg-like vectors plus pointers

Uses CUDA virtual assembly language

C wrapper for use with NVCC compiler

Implements recursion and dynamic dispatch

Intrinsic functions: rtTrace(), rtReportIntersection(), etc.

Programs reference variables by name

Variables are defined by

Static initializers

Binding to API Objects in the hierarchy

Program

Variable

Variable Scoping Rules

Context

GeometryInstance

Closest Hit Program

Material
Definition:

Color = red

Reference: Color

Context

GI GI

Material

Program

Variable Scoping Rules Cont’d

Context

GeometryInstance

Closest Hit Program

Material

Reference: Color

Context

GI GI

Material

Program

Definition:

Color = blue

Definition:

Color = red

Per Ray Data and Attributes

Per Ray Data

User-defined struct attached to rays

Can be used to pass data up and down the ray tree

Varies per Ray Type

Arbitrary Attributes

Produced by Intersection Programs

Consumed by Any Hit and Closest Hit Programs

Program Example – Pinhole Camera
struct PerRayData_radiance

{

float3 result;

float importance;

int depth;

};

rtDeclareVariable(float3, eye);

rtDeclareVariable(float3, U);

rtDeclareVariable(float3, V);

rtDeclareVariable(float3, W);

rtBuffer<float4, 2> output_buffer;

rtDeclareVariable(rtNode, top_object);

rtDeclareVariable(unsigned int,

radiance_ray_type);

rtDeclareSemanticVariable(rtRayIndex,

rayIndex);

RT_PROGRAM void pinhole_camera()

{

uint2 screen = output_buffer.size();

uint2 index =

make_uint2(rayIndex.get());

float2 d = make_float2(index) /

make_float2(screen) * 2.f - 1.f;

float3 ray_origin = eye;

float3 ray_direction =

normalize(d.x*U + d.y*V + W);

Ray ray = make_ray(ray_origin,

ray_direction, radiance_ray_type,

scene_epsilon, RT_DEFAULT_MAX);

PerRayData_radiance prd;

prd.importance = 1.f;

prd.depth = 0;

rtTrace(top_object, ray, prd);

output_buffer[index] = prd.result;

}

Program Example - Attributes

rtDeclareAttribute(float3, normal);

rtDeclareRayData(PerRayData_radiance,

prd_radiance);

RT_PROGRAM void closest_hit_radiance()

{

PerRayData_radiance& prd =

prd_radiance.reference();

prd.result = normal*0.5f + 0.5f;

}

rtDeclareAttribute(float3, normal);

RT_PROGRAM void intersect(int primIdx)

{

…

if(rtPotentialIntersection(root1))

{

normal = (O + root1*D)/radius;

if(rtReportIntersection(0))

}

…

}

Sphere Intersection Normal Visualization Shader

rtTrace(ray_type = radiance)

Execution Flow

Ray Generation

rtTrace(ray_type = shadow)

Closest Hit

rtIgnoreIntersection()

Any Hit

An Example – Whitted’s Scene

Whitted’s Scene – Context Setup

struct PerRayData_radiance

{

float3 result;

float importance;

int depth;

};

struct PerRayData_shadow

{

float attenuation;

};

Num. Ray Types = 2

Num. Entry Points = 1

Context

Whitted’s Scene – Object Hierarchy

Geometry

Group

GI GI

Material

GI

Geometry Material

Context

Geometry Geometry Material

Metal Shell GlassSphere Plane Checker

Pinhole

Camera

An Example – Hybrid Hard Shadows

Hybrid Hard Shadows - Pipeline

OpenGL

NVIRT

OpenGL

1. Rasterize shadow ray

requests with OpenGL

2. Trace shadow rays against

scene geometry

3. Use NVIRT output during

OpenGL shading

Hybrid Hard Shadows – Ray

Generation Program

Rasterize world space positions to FBO

Send NVIRT output to texture and render

RT_PROGRAM void shadow_request()

{

uint2 index = make_uint2(ray_index.get());

float3 ray_origin = request_buffer[index];

PerRayData_shadow prd;

prd.intensity = 1;

if(!isnan(ray_origin.x)) {

float3 ray_direction = normalize(light_pos-ray_origin);

Ray ray = make_ray(ray_origin, ray_direction, shadow_ray_type,

scene_epsilon, RT_DEFAULT_MAX);

rtTrace(shadow_casters, ray, prd);

}

shadow_buffer[index] = prd.intensity;

}

NVIRT Wrap-up

NVIRT is not a renderer

Can but used to implement a renderer, collision detection,

baking, etc.

Programmable Ray Tracing Pipeline

Intersection

Shading

Traversal

Abstract Tracing mechanism can take advantage of

future NVIDIA hardware

No need to change your code

NVIRT SDK Public Beta

Available this spring from http://www.nvidia.com

Next NVSG release will include NVIRT based renderer

http://www.nvidia.com/

Questions?
arobison@nvidia.com

http://www.nvidia.com

mailto:arobison@nvidia.com
http://www.nvidia.com/
http://www.nvidia.com/
http://www.nvidia.com/

