
1

Rendering Gooey Materials
with Multiple Layers

Rendering Gooey Materials
with Multiple Layers

Chris Oat
3D Application Research Group
ATI Research, Inc.

2

OutlineOutline

• Multi-Layered Materials - 30 minutes
– Layer compositing

– Depth parallax

– Light diffusion

Making an immersive, compelling virtual environment requires a keen attention to
detail. For game programmers, this generally means writing a lot of shaders so that
everything has a unique, realistic look. Writing many shaders takes time and in
reality rendering performance has to strike a balance with realism. Today I’d like to
talk about a rendering technique that uses simple approximations to attain complex
looking results. The focus will be on achieving a certain look (realism).

The first topic is multi-layered materials. I will show you a technique that uses
multiple texture layers to achieve the look of volumetric surfaces/materials. This
technique uses a few simplifying assumptions to reduce rendering cost while
maintain that “expensive” look. Several variations will be discussed that allow this
technique to scale to your needs based on available GPU resources and compute
cycles. I’ll show you how to achieve the look of volume by taking advantage of
depth parallax and approximating light diffusion.

3

IntroductionIntroduction

• Rendering semi-transparent, multi-layered materials
– Surface with multiple texture layers
– Texture layers are blended in some way

• Old way: Multi-texture blending
– Lerping two textures looks flat
– Layers are squashed together

• New way: Combination of techniques
– Normal mapping
– Transparency masking
– Parallax offset mapping
– Image filtering

This technique is appropriate for rendering a certain class of materials, specifically
multi-layered, volumetric materials. These materials blend multiple texture layers to
create a volumetric look. Historically these surfaces have been rendered using
simple multi-texture blending however this doesn’t provide a sufficiently realistic look
since simple texture blending results in flat, non-volumetric looking materials. We
improve upon the simple multi-texture blending to create realistic looking multi-layer
materials by leveraging several well known real time rendering techniques: normal
mapping, transparency masking, parallax offset mapping, and image filtering. We
combine these technologies to create realistic looking multi-layered materials.

4

MotivationMotivation

• Many real world surfaces have volumetric
material properties:
– Examples: Biological tissues, cloudy

atmosphere, aliens, etc…

• These materials have a very unique
appearance
– Don’t look like the kinds of materials we

typically render
– Zombie Guts != Plastic Teapots

• Traditionally you might use a volume renderer
to achieve this look
– Ray tracing isn’t practical for us
– Choose the most important visual

components and approximate them!

Being able to render realistic multi-layered materials is important because many real
work surfaces have volumetric material properties. Surfaces such as biological
tissues, volumetric atmospheric effects, and fictitious materials such as alien skin all
exhibit volumetric properties. These materials differ from the kinds of materials we
typically render in our games, in particular the get their unique appearance from the
complex light interactions that occur between surface layers. The image on the
right illustrates a multi-layered shader that’s been applied to a human heart model.

We can’t run a full volume renderer and still hope to be interactive so we have to
choose the visual components that are important to us and find inexpensive ways to
achieve the right look. Let’s take a look at the more important visual cues that
provide a material with the look of “volume.”

5

What are we trying to approximate?What are we trying to approximate?

• Volumetric material
– Volume approximated with multiple discrete layers
– Layers are semi-transparent
– Layers reflect, absorb, and transmit light

• Visually important properties:
– Inter-layer occlusion

• Layers store opacity in alpha
– Depth parallax

• Parallax due to layer depth or thickness
– Light diffusion

• Light scatters between layers

• How can we achieve the look and still be fast?
– Alpha blend/composite
– Parallax offsetting
– Blurring

We seek to approximate the visually complex interaction of multi-layered, semi-
transparent surfaces. We don’t necessarily want to implement something that’s
physically correct, we just want good fakes for the visually important elements.
We want: depth parallax, inter-layer occlusion, light diffusion.

1. Inter-layer occlusion just means that opaque outer regions should correctly
occlude inner regions. This is simple to achieve by storing opacity values in the
alpha channels of each layer.

2. Depth parallax is simply the perception of perspective due to depth. When you
look down into a volume you see the volume from a particular perspective, when
you look at more grazing angles you see the volume differently. You don’t get
this will plain old fixed function multi-texture blending. More on this in later
slides.

3. Light diffusion is the scattering of light as it passes through surfaces layers.
Lighting is such an important visual cue that it’s necessary to provide some form
of approximation here so that the user gets the impression of layer depth and
translucency.

We achieve this look by cheating! We use alpha blending tricks, parallax offsetting,
and image filtering to get volumetric looking materials.

6

Two layer example: Human HeartTwo layer example: Human Heart

• Each layer stored as a texture map
• Opaque texels occlude the texels below them

– LERP layers based on alpha
– This gets layer occlusion working
– But results in flat looking composite

• In order to give the impression of layer depth, a form of parallax
mapping is needed!
– Texture Coordinates for inner layer are computed in the shader

• Based on viewing angle and layer depth

Outer Layer: Normal, Base, Opacity maps

Inner Layer: Base map

The example I’m providing today only uses two layers to achieve a volumetric
looking material. I’ve stuck to two layers for simplicity, this technique scales to as
many layers as you want but I think you’ll find that two layers provides a very
compelling result. Two layers end up looking more “volumetric” then you might
expect.

The surface layer is composed of a base map, a normal map and a transparency
map. The surface layer can use simple bump mapping, use the transparency map
to provide per-pixel opacity values which are used to blend the inner and outer
layers. The model only stores UV coordinates for the surface layer, the UV
coordinates for the inner layer must be computed in the shader.

7

Multi-layer depth parallaxMulti-layer depth parallax

• Make the material look volumetric

• Depth parallax
– Shift in apparent position due to change in view

– Inner layer shifts with respect to outer layer

– Shift is more pronounced as depth increases

• Can’t use surface layer’s UV coordinate to sample inner layer’s texture

Ey
e

Subsurface layers should exhibit parallax to give the impression of depth.

Parallax is the apparent shift in position due to a change in the viewer’s line of sight.

By exploiting the effects of parallax in our shader we can add a sense of depth to
the surface layers; this proves to be a very important visual cue that will allow us to
achieve more realistic looking layered surfaces.

8

Multi-layer depth parallaxMulti-layer depth parallax

Eye

• Make the material look volumetric

• Depth parallax
– Shift in apparent position due to change in view

– Inner layer shifts with respect to outer layer

– Shift is more pronounced as depth increases

• Can’t use surface layer’s UV coordinate to sample inner layer’s texture

In addition to appearing blurry, subsurface layers should exhibit parallax. Parallax is
the apparent shift in position due to a change in the viewer’s line of sight. Figure
illustrates two different viewpoints of the same surface. If simple, multi-texture
blending was used to render this surface, as the viewpoint changed the under layer
would remain fixed relative to the top layer and this would result in the various
surface layers appearing flat or squashed. By exploiting the effects of parallax in
our shader we can add a sense of depth to the surface layers; this proves to be a
very important visual cue that will allow us to achieve more realistic looking layered
surfaces.

9

Multi-layer depth parallaxMulti-layer depth parallax

Eye

• Make the material look volumetric

• Depth parallax
– Shift in apparent position due to change in view

– Inner layer shifts with respect to outer layer

– Shift is more pronounced as depth increases

• Can’t use surface layer’s UV coordinate to sample inner layer’s texture

In addition to appearing blurry, subsurface layers should exhibit parallax. Parallax is
the apparent shift in position due to a change in the viewer’s line of sight. Figure
illustrates two different viewpoints of the same surface. If simple, multi-texture
blending was used to render this surface, as the viewpoint changed the under layer
would remain fixed relative to the top layer and this would result in the various
surface layers appearing flat or squashed. By exploiting the effects of parallax in
our shader we can add a sense of depth to the surface layers; this proves to be a
very important visual cue that will allow us to achieve more realistic looking layered
surfaces.

10

Inner layer’s texture coordinatesInner layer’s texture coordinates

• Layers are assumed to be parallel in tangent space
– Layer depth d is homogeneous for a given layer

• Find inner layer’s texture coordinate
1. Find view vector = V
2. Reflect V about Normal (from normal map) = R
3. Reflect R about surface plane = transmission vector T

• In tangent space, we simply negate R.z component
4. Find distance s along T to inner layer: Function of distance d between layers
5. Use T and s this to find inner layer’s texture coordinate

〉〈+〉〈=〉〈

=

〉−〈=

−−−=

yx

z

zyx

TTsvuvu

Tds

RRRT
NNVdotVR

vv

v

vvvv

vvvvv

,,','

/

,,
*),(*2

= Outer UV coordinate: <u,v>
= Inner UV coordinate: <u’,v’>

V

d

N
R

s
T

In order to calculate the inner layer’s texture coordinate we must first calculate a
transmission vector. The transmission vector points from the outer surface layer’s
sample point to the inner surface layer’s sample point (as shown in diagram). The
offset texture coordinate is determined by finding the intersection of the
transmission vector with the inner layer.

We save ourselves a bunch of ray/intersection testing by assuming that the layers
are flat and parallel in tangent space.

We use a very simple approximation to calculate the transmission vector; the
tangent space view vector is reflected about the per-pixel normal (sampled from a
normal map) to find a reflection vector. The reflection vector is then reflected about
the surface plane such that it points into the surface. Because these vectors are in
tangent space, reflecting the reflection vector about the surface plane is simply a
matter of negating its z component. We now have a unit length transmission vector.
Next we find the length along the transmission vector to the inner layer by dividing
the layer thickness by the absolute value of the transmission vector’s z component.
This length, along with the transmission vector’s x and y components give us a UV
offset for sampling from the inner layer’s base map.

11

Parallax offsetParallax offset

// Compute inner layer’s texture coordinate and transmission depth
// vTexCoord: Outer layer’s texture coordinate
// vViewTS: View vector in tangent space
// vNormalTS: Normal in tangent space (sampled normal map)
// fLayerThickness: Distance from outer layer to inner layer
float3 ParallaxOffsetAndDepth (float2 vTexCoord, float3 vViewTS,

float3 vNormalTS, float fLayerThickness)
{

// Tangent space reflection vector
float3 vReflectionTS = reflect(-vViewTS, vNormalTS);

// Tangent space transmission vector (reflect about surface plane)
float3 vTransTS = float3(vReflectionTS.xy, -vReflectionTS.z);

// Distance along transmission vector to intersect inner layer
float fTransDist = fLayerThickness / abs(vTransTS.z);

// Texel size: Hard coded for 1024x1024 texture size
float2 vTexelSize = float2(1.0/1024.0, 1.0/1024.0);

// Inner layer’s texture coordinate due to parallax
float2 vOffset = vTexelSize * fTransDist * vTransTS.xy;
float2 vOffsetTexCoord = vTexCoord + vOffset;

// Return offset texture coordinate in xy and transmission dist in z
return float3(vOffsetTexCoord, fTransDist);

}

1. Reflect tangent space view vector about the per-pixel normal from the normal
map using HLSL intrinsic reflect function

2. Find a tangent space transmission vector by negating the z component of the
tangent space reflection vector

3. Find the distance along transmission vector to the next layer by dividing the
layer thickness by the absolute value of the transmission vector’s z component

4. Find the UV offset in texel units (assuming a 1024x1024 texture here)
5. Use the offset to find a new UV coordinate for the inner layer
6. Return the new UV coordinate and the transmission distance

The new UV coordinate is then used for sampling the inner layers base map.

12

Parallax creates the illusion of depthParallax creates the illusion of depth

• The offset texture coordinate is used for sampling from the
inner layer’s texture

• This creates the illusion of depth or volume even though the
surface geometry is flat

• We still need a way to light the inner layer convincingly…

Eye

13

Multi-layer light diffusionMulti-layer light diffusion

• Light scatters as it enters a material
1. Light reaches surface
2. Some reflects back to eye
3. Some scatters further into the material
4. GOTO 2

• Physically based models for scattering are slow
• Get the look without doing the math!

– Light reflected back to eye from surface
– Light scatters on its way in
– Light scatters on its way out

Eye

A material’s reflectance properties provide important visual cues about the material.
In order to achieve a volumetric look, we need to approximate the effects of light
diffusing as it passes through a volumetric material.

The deeper a given ray travels into a surface, the more opportunities there are for
scattering. Light is scatters as it enters the material. Some light is reflected back
towards the viewer, some light is scattered further into the material. Light that
scatters into the material will have further opportunities to be scattered back to the
viewer or deeper into the material. The perceivable result of this scattering is
subsurface layers appearing blurry relative to the top most surface layers. The
deeper the layer from the surface, the more blurry it appears. Deeper layers also
appear more evenly lit since they have light scattered onto them from many
directions.

14

Getting the look: Incoming light Getting the look: Incoming light

• Surface layer lit as usual (N.L)
– Accounts for light that doesn’t enter material

• Inner layer is more evenly lit
– Transmitted light scatters onto layer from many directions

• Texture space lighting
– Render diffuse lighting into an off-screen texture using texture

coordinates as positions
– Acts like a dynamic light map for the outer layer

We know how to hand the directly reflected light, the light that is directly scattered
back into the eye. This accounts for all the light that reflects off the outer layer and
directly back to the viewer.

In order to get a correct lighting term for the inner layer, we need to account for
some of the incoming scattering as light passes through the material. Instead of
having this highly directional lighting component for the inner layer, we need a
method that will provide a more even lit surface to account for all the scattering
that’s happening as light enters the material.

You can achieve this by using a technique known as texture space lighting.
Essentially you render a dynamic diffuse light map into an offscreen renderable
texture map.

15

Getting the look: Incoming lightGetting the look: Incoming light

• Texture space lighting
– Render diffuse lighting into an off-screen texture
– Light as a 3D model but draw into texture
– Vertex shader outputs texture coordinates as projected “positions” then

the rasterizer does the unwrap
– Vertex shader computes light vectors based on 3D position and

interpolates
– This is a light map for the outer layer
– HLSL implementation online: Dave Gosselin’s Skin Rendering Slides

• www.ati.com/developer/gdc/D3DTutorial_Skin_Rendering.pdf

More complex lighting is possible through dynamic light mapping. Many developers
use a dynamic diffuse light map for approximating subsurface scattering in skin.
You render the object in texture space (light map space) then blur the light map
then apply it to the final object. You could do something like this: Render surface
layer in light map space, blur it and use this for per-pixel incoming light for the next
layer down. Each inner layer uses the blurred light map of the previous layer as an
“incoming light” term and thus the light is propagated down to lower layers,
becoming progressively more blurry (this also allows upper layers to cast shadows
into lower layers).

16

Getting the look: Incoming lightGetting the look: Incoming light

• For the inner layer’s lighting, use a blurred version of the
outer layer’s light map

• This gives us smooth, diffused lighting on the inner layer

• The amount of blurring depends on the thickness of the
outer layer

– Use a variable sized blur kernel

Outer layer’s light maps

Inner layer

17

Poisson disc kernelPoisson disc kernel

• A Poisson disc kernel is ideal since it can be resized dynamically
based on the amount of light diffusion you want

• Kernel takes a fixed number of taps from source texture
• Taps are distributed randomly on a unit disc (Poisson

distribution)
• Disc size can be scaled on a per-pixel basis for more or less

blurring
• Our disc’s radius is based on layer thickness

– Thicker layer results in more blurring

Small Blur Area Large Blur Area

18

Growable Poisson discGrowable Poisson disc

// Growable Poisson disc (13 samples)
// tSource: Source texture sampler
// vTexCoord: Texture space location of disc’s center
// fRadius: Radius if kernel (in texel units)
float3 PoissonFilter (sampler tSource, float2 vTexCoord, float fRadius)
{

// Hard coded texel size: Assumes 1024x1024 source texture
float2 vTexelSize = float2(1.0/1024.0, 1.0/1024.0);

// Tap locations for unit disc
float2 vTaps[12] = {float2(-0.326212,-0.40581),float2(-0.840144,-0.07358),

float2(-0.695914,0.457137),float2(-0.203345,0.620716),
float2(0.96234,-0.194983),float2(0.473434,-0.480026),
float2(0.519456,0.767022),float2(0.185461,-0.893124),
float2(0.507431,0.064425),float2(0.89642,0.412458),
float2(-0.32194,-0.932615),float2(-0.791559,-0.59771)};

// Take a sample at the disc’s center
float3 cSampleAccum = tex2D(tSource, vTexCoord);

// Take 12 samples in disc
for (int nTapIndex = 0; nTapIndex < 12; nTapIndex++)
{

// Compute new texture coord inside disc
float2 vTapCoord = vTexCoord + vTexelSize * vTaps[nTapIndex] * fRadius;

// Accumulate samples
cSampleAccum += tex2D(tSource, vTapCoord);

}

return cSampleAccum / 13.0; // Return average
}

19

Getting the look: Outgoing lightingGetting the look: Outgoing lighting

• The blurred light map approximates light scattering as it enters the
material

• Light also scatter as on its way back out of the material
• This has the effect of the Inner layer’s base map appearing blurry
• Use Growable Poisson Disc filter for sampling inner layer’s base map

– This time kernel size depends on transmission distance through material
– Not just layer thickness
– Kernel is centered around the inner layer’s parallax offset texture coordinate

• Inner layer now looks blurry
– The more material you’re looking through, the blurrier it will look

Ey
e

Eye

20

Putting it all togetherPutting it all together

// Sample from outer layer’s base map and light map textures
float3 cOuterDiffuse = tex2D(tLightMap, i.vTexCoord);
float4 cOuterBase = tex2D(tOuterBaseMap, i.vTexCoord); // Opacity in alpha channel

// Compute parallax offset texture coordinate for sampling from inner layer textures
// returns UV coord in X and Y and transmission distance in Z
float3 vOffsetAndDepth = ParallaxOffsetAndDepth(i.vTexCoord, vViewTS,

vNormalTS, fLayerThicknes);

// Poisson disc filtering: blurry light map (blur size based on layer thickness)
float3 cInnerDiffuse = PoissonFilter(tLightMap, vOffsetAndDepth.xy, fLayerThickness);

// Poisson disc filtering: blurry base map (blur size based on transmission distance)
float3 cInnerBase = PoissonFilter(tInnerBaseMap, vOffsetAndDepth.xy, vOffsetAndDepth.z);

// Compute N.V for additional compositing factor (prefer outer layer at grazing angles)
float fNdotV = saturate(dot(vNormalTS, vViewTS));

// Lerp based on opacity and N.V (N.V prevents artifacts when view is very edge on)
float3 cOut = lerp(cOuterBase.rgb*cOuterDiffuse.rgb,

cInnerBase.rgb*cInnerDiffuse.rgb,
cOuterBase.a * fNdotV);

21

Demo: Beating human heartDemo: Beating human heart

22

Taking it to the next levelTaking it to the next level

• Increase complexity
– More than two layers
– Use the same techniques I’ve shown here
– This is more expensive, but looks really good!

• Improve quality
– Inter-layer shadowing
– Scale light map samples by their corresponding opacities from base map
– Keeps light from passing through opaque regions
– In practice this doesn’t make a huge difference, as you can’t see what’s below an

opaque region unless you’re looking at it very edge on on
– More important when you’re using many layers or a very deep/thick material

• Improve performance
– Eliminate the off screen render targets
– Two suggestions for eliminating renderable texture (light map)
– See next slide…

23

Lighting optimization 1Lighting optimization 1

• Outer layer lit as usual
– Use a normal map for high frequency surface detail

• Instead of using a blurred light map for the Inner layer’s lighting
– Use a modified Poisson Disc filter kernel

– Take multiple samples from outer layer’s Normal Map
• Compute N.L for each sample
• Average all the N.L computations

• Eliminates the need for a renderable texture!

Eliminates renderable texture. Improve batching by removing that intermediate
render step. But this adds a bunch of additional texture sampling.

24

Lighting optimization 2Lighting optimization 2

• Outer layer lit as usual
– Use a normal map for high frequency surface detail

• Instead of using a blurred light map or multiple normal map samples for the
Inner layer’s lighting:

– Use the geometric normal for computing N.L
– Smoother, lower frequency lighting
– In practice, this works quite well and it’s a lot faster

• Eliminates the need for a renderable texture!

• Reduces texture bandwidth requirements by eliminating one of the Poisson
disc filtering steps

N.L

N.L

25

ConclusionConclusion

• A method for rendering multi-layered
materials

• Computationally efficient:
– Forget about being physically correct

– Focus on approximating the right “look”
• Exploit perceptual cues:

– Depth parallax for volume

– Texture blurring for subsurface scattering

26

ReferencesReferences

• Borshukov, G., and Lewis, J. P. 2003. Realistic Human Face Rendering for The
Matrix Reloaded. In the proceedings of SIGGRAPH 2003, Technical Sketches

• Gosselin, D. 2004. Real Time Skin Rendering. Game Developer Conference, D3D
Tutorial 9

• Kaneko, T., Takahei, T., Inami, M., Kawakami, N., Yanagida, Y., Maeda, T., Tachi,
S. 2001. Detailed Shape Representation with Parallax Mapping. In Proceedings of
ICAT 2001, pp. 205-208.

• Sander, P.V., Gosselin, D., and Mitchell, J. L.2004. Real-Time Skin Rendering on
Graphics Hardware. In the proceedings of SIGGRAPH 2004, Technical Sketch.

• Welsh, T. 2004. Parallax Mapping, ShaderX3: Advanced Rendering with DirectX
and OpenGL, Engel, W. Ed., A.K. Peters, 2004

27

Questions?
Chris Oat

These slides are available for download:

www.ati.com/developer

