
Real-time Atmospheric Effects
in Games

Real-time Atmospheric Effects
in Games

Carsten Wenzel

OverviewOverview

• Introduction

• Scene depth based rendering

• Atmospheric effects breakdown
– Sky light rendering

– Fog approaches

– Soft particles

– Cloud rendering

– Volumetric lightning approximation

– Other interesting stuff

• Conclusions

IntroductionIntroduction

• Atmospheric effects are important cues of
realism especially in outdoor scenes

• Create a sense of depth

• Help increase level of immersion

MotivationMotivation

• Atmospheric effects have always been
subject to coarse approximation due to their
inherent mathematical complexity

• Increased power and flexibility of GPUs
allows to implement more sophisticated
models in real-time

• How to map them efficiently on HW?
• CryEngine2 showcase

CryEngine2 VideoCryEngine2 Video

*

Related WorkRelated Work

• Deferred Shading (Hargreaves 2004)

• Atmospheric Scattering (Nishita et al 1993)

• Cloud Rendering (Wang 2003)

Scene Depth Based Rendering:
Motivation
Scene Depth Based Rendering:
Motivation
• Many atmospheric effects require accessing scene depth
• Hybrid rendering approach akin to Deferred Shading

[Hargreaves04]
• Can be used with variety of rendering approaches

– Deferred Shading is not a requirement

– CryEngine2 uses traditional rendering style

– Simply apply scene depth based rendering for specific effects

• Approach:
– Lay out per-pixel scene depth first

– Make it available to following rendering passes to be able to
reconstruct world space position

Deferred shading general idea: No redundant shading cost by rendering geometry
fist and shade later. While rendering geometry save out all necessary shading
attributes to a fat frame buffer (position->depth, normal, diffuse/spec color, etc.). At
a later stage apply shading using attributes stored in “fat” frame buffer.

Scene Depth Based Rendering:
Benefits
Scene Depth Based Rendering:
Benefits
• Decouple rendering of opaque scene geometry and application

of other effects
– Atmospheric effects

– Post-processing

– More

• Can apply complex models while keeping the shading cost
moderate
– Features are implemented in separate shaders

– Helps avoiding hardware shader limits

– Allows broader use of these effects by mapping them to older
hardware

Scene Depth Based Rendering:
Concerns
Scene Depth Based Rendering:
Concerns

• Trouble child: Alpha-transparent objects
– The problem: only one color / depth value stored;

however, pixel overdraw caused by alpha transparent
objects potentially unbound

– Workaround for specific effects will be mentioned later

Scene Depth Based Rendering:
API and Hardware Concerns
Scene Depth Based Rendering:
API and Hardware Concerns

• Usually cannot directly bind Z-Buffer and
reverse map

• Write linear eye-space depth to texture instead

• Float format vs. RGBA8

• Supporting Multi-Sample Anti-Aliasing is tricky

Recovering World Space
Position from Depth
Recovering World Space
Position from Depth

• Many deferred shading implementations transform
a pixel’s homogenous clip space coordinate back
into world space
– 3 dp4 or mul/mad instructions

• There’s often a simpler / cheaper way
– For full screen effects have the distance from the camera’s

position to its four corner points at the far clipping plane
interpolated

– Scale the pixel’s normalized linear eye space depth by the
interpolated distance and add the camera position (one mad
instruction)

Sky Light RenderingSky Light Rendering

• Mixed CPU / GPU implementation of [Nishita93]

• Goal: Best quality possible at reasonable runtime cost
– Trading in flexibility of camera movement

• Assumptions and constraints:
– Camera is always on the ground

– Sky infinitely far away around camera

– Win: Sky update is view-independent, update only over time

Sky Light Rendering: CPUSky Light Rendering: CPU

• Solve Mie / Rayleigh in-scattering integral
– For 128x64 sample points on the sky hemisphere solve…

– Using the current time of day, sunlight direction, Mie / Rayleigh
scattering coefficients

– Store the result in a floating point texture

• Distribute computation over several frames
– Each update takes several seconds to compute

() () () () () ()()∫ 









= −−

−b

a

ac

P

P

PPtPPtH
h

sv eegFKII λλθλλλ ,,0, (1)

Pa – Start point of integration (in our context: viewer)
Pb – End point of integration (in our context: atmosphere top along view direction)
Pc – Sun
P – Point along path PaPb

Iv (λ) – in scattered light along path PaPb

Is (λ) – sun intensity
I (λ) – scattering coefficient
F(θ, g) – Phase function

h – Height of P over ground
H0 – Scale height

t(s, λ) – Optical depth function

Sky Light Rendering: GPUSky Light Rendering: GPU

• Map the float texture onto the sky dome

• Problem: low-res texture produces blocky results even
when filtered
– Solution: Move application of phase function to GPU (F(θ,g) in

Eq.1)

– High frequency details (sun spot) now computed per-pixel

• Next-Gen GPUs should be able to solve Eq.1 via pixel
shader and render to texture
– Integral is a loop of ~200 asm instructions iterating 32 times

– Final execution ~6400 instructions to compute in-scattering for
each sample point on the sky hemisphere

Global Volumetric FogGlobal Volumetric Fog

• Nishita’s model still too expensive to model
fog/aerial perspective

• Want to provide an atmosphere model
– To apply its effects on arbitrary objects in the

scene

• Developed a simpler method to compute
height/distance based fog with exponential
fall-off

Global Volumetric FogGlobal Volumetric Fog

(2)

f – fog density
distribution

b – global density

c – height fall-off

v – view ray from
camera (o) to target
pos (o+d), t=1

F – fog density along v

()()
()

()() ()()

()() ()()dttvf

z

cd

zyx
co

T
zzyyxx

czT

etvF

cd
edddbe

dtdtdotdotdofdttvf

dtotv
bezyxf

z
z

vv

vv

vvv

∫−

−
−

−

=








 −
++=

+++=

+=

=

∫∫
1

,,

,,

222

1

0

Global Volumetric Fog:
Shader Implementation
Global Volumetric Fog:
Shader Implementation

float ComputeVolumetricFog(in float3 cameraToWorldPos)
{

// NOTE: cVolFogHeightDensityAtViewer = exp(-cHeightFalloff *
cViewPos.z);
float fogInt = length(cameraToWorldPos) *
cVolFogHeightDensityAtViewer;

const float cSlopeThreshold = 0.01;
if(abs(cameraToWorldPos.z) > cSlopeThreshold)
{

float t = cHeightFalloff * cameraToWorldPos.z;
fogInt *= (1.0 - exp(-t)) / t;

}

return exp(-cGlobalDensity * fogInt);
}

Eq.2 translated into HLSL…

Combining Sky Light and FogCombining Sky Light and Fog

• Sky is rendered along with scene geometry

• To apply fog…
– Draw a full screen quad

– Reconstruct each pixel’s world space position

– Pass position to volumetric fog formula to retrieve
fog density along view ray

– What about fog color?

Combining Sky Light and FogCombining Sky Light and Fog

• Fog color
– Average in-scattering samples along the horizon

while building texture

– Combine with per-pixel result of phase function to
yield approximate fog color

• Use fog color and density to blend against
back buffer

Combining Sky Light and Fog:
Results
Combining Sky Light and Fog:
Results

*

Fog VolumesFog Volumes

• Fog volumes via ray-tracing in the shader

• Currently two primitives supported: Box, Ellipsoid

• Generalized form of Global Volumetric Fog, exhibit same
properties (additionally, direction of height no longer restricted
to world space up vector, gradient can be shifted along height
dir)

• Ray-trace in object space: Unit box, unit sphere

• Transform results back to solve fog integral

• Render bounding hull geometry (front faces if outside,
otherwise back faces), then for each pixel determine start and
end point of view ray to plug into Eq.2

Fog VolumesFog Volumes

• Start point
– Either camera pos (if viewer is inside) or ray’s entry point

into fog volume (if viewer is outside)

• End point
– Either ray’s exit point out of the fog volume or

world space position of pixel depending which one
of the two is closer to the camera

• Render fog volumes back to front
• Solve fog integral and blend with back buffer

Fog VolumesFog Volumes

Rendering of fog volumes: Box (top left/right), Ellipsoid (bottom left/right)

Fog and Alpha-Transparent
Objects
Fog and Alpha-Transparent
Objects

• Shading of actual object and application of
atmospheric effect can no longer be decoupled
– Need to solve both and combine results in same pass

• Global Volumetric Fog
– Approximate per vertex
– Computation is purely math op based (no lookup textures

required)
– Maps well to older HW…

• Shader Models 2.x

• Shader Model 3.0 for performance reasons / due to lack of vertex
texture fetch (IHV specific)

Fog and Alpha-Transparent
Objects
Fog and Alpha-Transparent
Objects

• Fog Volumes
– Approximate per object, computed on CPU

– Sounds awful but it’s possible when designers
know limitation and how to work around it

• Alpha-Transparent objects shouldn’t become too big, fog
gradient should be rather soft

– Compute weighted contribution by processing all
affecting of fog volumes back to front w.r.t camera

Soft ParticlesSoft Particles

• Simple idea
– Instead of rendering a particle as a regular billboard, treat it

as a camera aligned volume

– Use per-pixel depth to compute view ray’s travel distance
through volume and use the result to fade out the particle

– Hides jaggies at intersections with other geometry

– Some recent publications use a similar idea and treat
particles as spherical volumes

• We found that for our purposes a volume box is sufficient {saving
shader instructions; important as particles are fill-rate hungry}

Soft Particles: ResultsSoft Particles: Results

Comparisons shots of particle rendering with soft
particles disabled (left) and enabled (right) *

Clouds Rendering Using Per-
Pixel Depth
Clouds Rendering Using Per-
Pixel Depth

• Follow approach similar to [Wang03], Gradient-
based lighting

• Use scene depth for soft clipping (e.g. rain clouds
around mountains) – similar to Soft Particles

• Added rim lighting based on cloud density

Cloud ShadowsCloud Shadows

• Cloud shadows are cast in
a single full screen pass

• Use depth to recover
world space pos,
transform into shadow
map space

Volumetric Lightning Using Per-
Pixel Depth
Volumetric Lightning Using Per-
Pixel Depth

• Similar to Global Volumetric Fog
– Light is emitted from a point falling off radially

• Need to carefully select attenuation function
to be able to integrate it in a closed form

• Can apply this lighting model just like global
volumetric fog
– Render a full screen pass

Volumetric Lightning ModelVolumetric Lightning Model

(3)

f – light attenuation function

i – source light intensity

l – lightning source pos

a – global attenuation control
value

v – view ray from camera (o) to
target pos (o+d), t=1

F – amount of light gathered
along v

()()
()

()

()() ()()

()()tvF

vuw
vuw

v
vuw
wv

dddi

dtdtdotdotdofdttvf

dtotv

zyxla

izyxf

zyx

T
zzyyxx

T

T

v

vv

vvv

v

=





















−










−
−









−

+

++=

+++=

+=

−⋅+
=

∫∫

2

22
222

1

0

2

4
4

arctan
4
2arctan

2

,,

,,1
,,

Notice that HLSL’s arctan can compute up to four results in parallel. No need to call
it twice!

Volumetric Lightning Using Per-
Pixel Depth: Results
Volumetric Lightning Using Per-
Pixel Depth: Results

*

Other Effects using Per-Pixel
Depth: Rivers
Other Effects using Per-Pixel
Depth: Rivers

• Rivers (and water areas in general)

• Special fog volume type: Plane

• Under water fog rendered as described earlier
(using a simpler constant density fog model
though)

• Shader for water surface enhanced to softly blend
out at riverside (difference between pixel depth of
water surface and previously stored scene depth)

Other Effects using Per-Pixel
Depth: River results
Other Effects using Per-Pixel
Depth: River results

River shading –

Screens taken from a hidden section of the E3 2006 demo *

ConclusionConclusion

• Depth Based Rendering offers lot’s of opportunities

• Demonstrated several ways of how it is used in CryEngine2

• Integration issues (alpha-transparent geometry, MSAA)

Kualoa Ranch on Hawaii –

Real world photo (left), internal replica rendered with CryEngine2 (right)

ReferencesReferences

• [Hargreaves04] Shawn Hargreaves, “Deferred
Shading,” Game Developers Conference, D3D Tutorial
Day, March, 2004.

• [Nishita93] Tomoyuki Nishita, et al., “Display of the
Earth Taking into Account Atmospheric Scattering,” In
Proceedings of SIGGRAPH 1993, pages 175-182.

• [Wang03] Niniane Wang, “Realistic and Fast Cloud
Rendering in Computer Games,” In Proceedings of
SIGGRAPH 2003.

QuestionsQuestions

???

AcknowledgementsAcknowledgements

Many thanks to…

Natalya Tatarchuk, ATI

Crytek R&D / Crysis dev team

P.S.P.S.

Interested in CryEngine2 HDR footage?

Check out BrightSide’s expo booth. It shows a fly
through of Crysis level (Crytek’s upcoming title)
captured in HDR on their latest HDR HDTV
displays.

