Real-time Atmospheric Effects
in Games

Carsten Wenzel

CRYVT=K

Overview

* Introduction
* Scene depth based rendering
* Atmospheric effects breakdown
— Sky light rendering
Fog approaches
— Soft particles
— Cloud rendering
— Volumetric lightning approximation
— Other interesting stuff

* Conclusions

Introduction

* Atmospheric effects are important cues of
realism especially in outdoor scenes

* Create a sense of depth

* Help increase level of immersion

Motivation

* Atmospheric effects have always been
subject to coarse approximation due to their
inherent mathematical complexity

* Increased power and flexibility of GPUs
allows to implement more sophisticated
models in real-time

* How to map them efficiently on HW?
* CryEngine2 showcase

CryEngine2 Video

Related Work

* Deferred Shading (Hargreaves 2004)
* Atmospheric Scattering (Nishita et al 1993)

* Cloud Rendering (Wang 2003)

Scene Depth Based Rendering: v
Motivation

-

Many atmospheric effects require accessing scene depth

Hybrid rendering approach akin to Deferred Shading
[Hargreaves04]

Can be used with variety of rendering approaches

— Deferred Shading is not a requirement

— CryEngine?2 uses traditional rendering style

— Simply apply scene depth based rendering for specific effects
Approach:

— Lay out per-pixel scene depth first

— Make it available to following rendering passes to be able to
reconstruct world space position

Deferred shading general idea: No redundant shading cost by rendering geometry
fist and shade later. While rendering geometry save out all necessary shading
attributes to a fat frame buffer (position->depth, normal, diffuse/spec color, etc.). At
a later stage apply shading using attributes stored in “fat” frame buffer.

Scene Depth Based Rendering: v
Benefits

-

* Decouple rendering of opaque scene geometry and application
of other effects

— Atmospheric effects
— Post-processing
— More

* Can apply complex models while keeping the shading cost
moderate

— Features are implemented in separate shaders
— Helps avoiding hardware shader limits

— Allows broader use of these effects by mapping them to older
hardware

Scene Depth Based Rendering: v
Concerns e

* Trouble child: Alpha-transparent objects

— The problem: only one color / depth value stored;
however, pixel overdraw caused by alpha transparent
objects potentially unbound

— Workaround for specific effects will be mentioned later

Scene Depth Based Rendering:
APl and Hardware Concerns

* Usually cannot directly bind Z-Buffer and
reverse map

* Write linear eye-space depth to texture instead

* Float format vs. RGBAS8

* Supporting Multi-Sample Anti-Aliasing is tricky

Recovering World Space b
Position from Depth

-

* Many deferred shading implementations transform
a pixel's homogenous clip space coordinate back
into world space

— 3 dp4 ormul/mad instructions

* There’s often a simpler / cheaper way

— For full screen effects have the distance from the camera’s
position to its four corner points at the far clipping plane
interpolated

— Scale the pixel’s normalized linear eye space depth by the
interpolated distance and add the camera position (one mad
instruction)

Sky Light Rendering

* Mixed CPU / GPU implementation of [Nishita93]

* Goal: Best quality possible at reasonable runtime cost
— Trading in flexibility of camera movement

* Assumptions and constraints:
— Camera is always on the ground
— Sky infinitely far away around camera

— Win: Sky update is view-independent, update only over time

Sky Light Rendering: CPU

* Solve Mie / Rayleigh in-scattering integral

— For 128x64 sample points on the sky hemisphere solve...

— Using the current time of day, sunlight direction, Mie / Rayleigh
scattering coefficients

— Store the result in a floating point texture
* Distribute computation over several frames

— Each update takes several seconds to compute

P, — Start point of integration (in our context: viewer)

P, — End point of integration (in our context: atmosphere top along view direction)
P.—Sun

P — Point along path PP,

l, (\) — in scattered light along path PP,
ls () — sun intensity

| (\) — scattering coefficient

F(8, g) — Phase function

h — Height of P over ground
H, — Scale height

t(s, A) — Optical depth function

Sky Light Rendering: GPU

Map the float texture onto the sky dome

Problem: low-res texture produces blocky results even
when filtered

— Solution: Move application of phase function to GPU (F(8,g) in
Eq.1)

— High frequency details (sun spot) now computed per-pixel

Next-Gen GPUs should be able to solve Eq.1 via pixel
shader and render to texture

— Integral is a loop of ~200 asm instructions iterating 32 times

— Final execution ~6400 instructions to compute in-scattering for
each sample point on the sky hemisphere

Global Volumetric Fog

* Nishita's model still too expensive to model
fog/aerial perspective

* Want to provide an atmosphere model

— To apply its effects on arbitrary objects in the
scene

* Developed a simpler method to compute
height/distance based fog with exponential
fall-off

Global Volumetric Fog

\7(t)=5+lg f — fog density

§.1(5(j (o, +1d .0, +td .0, +1a.} Jdar b_zllsots:f :,I::Sny

- ¢ — height fall-off
—cd,
—he > \/ dx2 + dy2 + dzz \f —€ :| v — view ray from

cd camera (0) to target

z

4 £(5(¢))d pos (o+d), t=1
y v(t))dt
F(V(f)) =e* F — fog density along v

Global Volumetric Fog:
Shader Implementation

Eq.2 translated into HLSL...

float ComputeVolumetricFog(in float3 cameraToWorldPos)

{

float fogInt = length(cameraToWorldPos) *
cVolFogHeightDensityAtViewer;

const float cSlopeThreshold = 0.01;
if (abs(cameraToWorldPos.z) > cSlopeThreshold)
{
float t
fogInt *

cHeightFalloff * cameraToWorldPos.z;
(1.0 -exp(-t)) / t;
}

return exp(-cGlobalDensity * fogInt);

Combining Sky Light and Fog

» Sky is rendered along with scene geometry
* To apply fog...

— Draw a full screen quad

— Reconstruct each pixel’s world space position

— Pass position to volumetric fog formula to retrieve
fog density along view ray

— What about fog color?

Combining Sky Light and Fog

* Fog color

— Average in-scattering samples along the horizon
while building texture

— Combine with per-pixel result of phase function to
yield approximate fog color

* Use fog color and density to blend against
back buffer

Combining Sky Light and Fog:
Results

Fog Volumes

Fog volumes via ray-tracing in the shader
Currently two primitives supported: Box, Ellipsoid

Generalized form of Global Volumetric Fog, exhibit same
properties (additionally, direction of height no longer restricted
to world space up vector, gradient can be shifted along height
dir)

Ray-trace in object space: Unit box, unit sphere

Transform results back to solve fog integral

Render bounding hull geometry (front faces if outside,
otherwise back faces), then for each pixel determine start and
end point of view ray to plug into Eq.2

Fog Volumes

Start point

— Either camera pos (if viewer is inside) or ray’s entry point
into fog volume (if viewer is outside)

End point

— Either ray’s exit point out of the fog volume or
world space position of pixel depending which one
of the two is closer to the camera

Render fog volumes back to front
Solve fog integral and blend with back buffer

Fog Volumes

Rendering of fog volumes: Box (top left/right), Ellipsoid (bottom left/right)

Fog and Alpha-Transparent
Objects

* Shading of actual object and application of
atmospheric effect can no longer be decoupled

— Need to solve both and combine results in same pass

* Global Volumetric Fog
— Approximate per vertex

— Computation is purely math op based (no lookup textures
required)

— Maps well to older HW...
* Shader Models 2.x

* Shader Model 3.0 for performance reasons / due to lack of vertex
texture fetch (IHV specific)

Fog and Alpha-Transparent
Objects

* Fog Volumes
— Approximate per object, computed on CPU

— Sounds awful but it’s possible when designers
know limitation and how to work around it

* Alpha-Transparent objects shouldn’t become too big, fog
gradient should be rather soft

— Compute weighted contribution by processing all
affecting of fog volumes back to front w.r.t camera

Soft Particles

e Simple idea

— Instead of rendering a particle as a regular billboard, treat it
as a camera aligned volume

— Use per-pixel depth to compute view ray’s travel distance
through volume and use the result to fade out the particle

— Hides jaggies at intersections with other geometry

— Some recent publications use a similar idea and treat
particles as spherical volumes

* We found that for our purposes a volume box is sufficient {saving
shader instructions; important as particles are fill-rate hungry}

Soft Particles: Results

Comparisons shots of particle rendering with soft
particles disabled (left) and enabled (right) *

Clouds Rendering Using Per-
Pixel Depth

* Follow approach similar to [Wang03], Gradient-
based lighting

* Use scene depth for soft clipping (e.g. rain clouds
around mountains) — similar to Soft Particles

* Added rim lighting based on cloud density

‘l ‘l ‘l

Cloud Shadows

* Cloud shadows are cast in
a single full screen pass

Use depth to recover
world space pos,
transform into shadow
map space

Volumetric Lightning Using Per-
Pixel Depth

 Similar to Global Volumetric Fog
— Light is emitted from a point falling off radially

* Need to carefully select attenuation function
to be able to integrate it in a closed form

* Can apply this lighting model just like global
volumetric fog

— Render a full screen pass

Heernz))= "

1+a-HZ_ —(x,y,z)TH2

f — light attenuation function
i — source light intensity

| - lightning source pos

value
v+2w

v
—— arctan[J ;
. 2 . 2 v — view ray from camera (0) to
duw—v J duw—v target pos (o+d), t=1
Vauw—v?

F — amount of light gathered
along v

a — global attenuation control
arctan[
2

Notice that HLSL’s arctan can compute up to four results in parallel. No need to call
it twice!

Volumetric Lightning Using Per-
Pixel Depth: Results

Other Effects using Per-Pixel
Depth: Rivers

Rivers (and water areas in general)
Special fog volume type: Plane

Under water fog rendered as described earlier
(using a simpler constant density fog model
though)

Shader for water surface enhanced to softly blend
out at riverside (difference between pixel depth of
water surface and previously stored scene depth)

Other Effects using Per-Pixel
Depth: River results

River shading —

Screens taken from a hidden section of the E3 2006 demo *

Conclusion

* Depth Based Rendering offers lot’s of opportunities

* Demonstrated several ways of how it is used in CryEngine2

* Integration issues (alpha-transparent geometry, MSAA)

Kualoa Ranch on Hawaii —

Real world photo (left), internal replica rendered with CryEngine?2 (right)

References

* [Hargreaves04] Shawn Hargreaves, “Deferred
Shading,” Game Developers Conference, D3D Tutorial
Day, March, 2004.

[Nishita93] Tomoyuki Nishita, et al., “Display of the
Earth Taking into Account Atmospheric Scattering,” In
Proceedings of SIGGRAPH 1993, pages 175-182.

[Wang03] Niniane Wang, “Realistic and Fast Cloud
Rendering in Computer Games,” In Proceedings of
SIGGRAPH 2003.

Questions

Acknowledgements

Many thanks to...

Natalya Tatarchuk, ATI
Crytek R&D / Crysis dev team

P.S.

Interested in CryEngine2 HDR footage?

Check out BrightSide’s expo booth. It shows a fly
through of Crysis level (Crytek’s upcoming title)
captured in HDR on their latest HDR HDTV
displays.

