SIGGRAPH201
\‘;/4 The People . g S Q

O

Uncharted 2: Character Lighting and

Shading

John Hable
Naughty Dog

Focus: Characters

Drake

You play as Drake, the loveable rogue. Check out this link for more character
development: http://www.penny-arcade.com/comic/2009/10/19/.

Chloe

Elena

Lazaravic

Shafer

Todo List:

« Skin

* Hair

» Cloth

« 5 Secrets

Skin [

+ Efficient Rendering of Human Skin, Euge
d'Eon, David Luebke, and Eric Enderton,
Eurographics 2007

* NVIDIA Human Head Demo
« Compare with real shots.

The best implementation of skin in realtime that I've seen is the NVIDIA Human Head
demo.

10

Doug Jones

http://www.omnipop.com/artist-details.php?BID=69

http://www.collider.com/uploads/imageGallery/Doug_Jones/doug_jones.jpg

When you look at the render on the left vs. an actual picture of Doug Jones, thereis a
certain fleshiness that is hard to explain. That’s what | like about the NVIDIA
technique. On some level, it just “feels” like skin.

11

* Yikes!

Benjamin Button [‘ e
g/

Obviously, movies can go much farther than we can in realtime. We’ll catch up
eventually...l hope.

12

Let’s Test! 7

» Lazaravic
* RenderMonkey

This next section with show lots of pictures using Lazarevic from U2. Note that these
tests are in Rendermonkey, not the game engine.

13

Compare 5-ish Approaches

1. Standard Diffuse
2. Nvidia Approach

3a. 12-Tap Separate
* Do 12-Tap blur as separate shader.

3b. 12-Tap Combined

* Do 12-Tap blur in final render pass.
4. Bent Normals
5. Blended Normals

14

1) Standard Diffuse

Lazaravic with standard dot(N,L) lighting.

15

Lighting-Only

16

2) NVIDIA Human Head Demo

Non-sss [osss | '~ Combined

The NVIDIA technique divides light into diffuse light that gets absorbed and
immediately retransmitted, versus light that bounces around inside the skin for a
while before exiting. Not that the SSS light is more red-ish.

17

2) NVIDIA Human Head Demo

Efficient Rendering of Human Skin, Eugene d'Eon, David Luebke}

Enderton, Eurographics 2007

y

18

2) NVIDIA Approach

« Combine Blurs

diffColor = direct*float3(.233,.455,.649);
diffColor += Im1*float3(.100,.336,.344);
diffColor += Im2*float3(.118,.198,.0);
diffColor += Im3*float3(.113,.007,.007);
diffColor += Im4*float3(.358,.004,.0);
diffColor += Im5*float3(.078,0,0);

Their approach uses essentially 6 layers of blur.

19

2) NVIDIA Approach

 Combine Blurs
diffColor = direct*float3(.233,.455,.649);

The first layer is essentially no blur. This simulates light that gets absorbed and
immediately retransmitted.

20

2) NVIDIA Approach

« Combine Blurs

diffColor += Im1*float3(.100,.336,.344);
diffColor += Im2*float3(.118,.198,.0);
diffColor += Im3*float3(.113,.007,.007);
diffColor += Im4*float3(.358,.004,.0);
diffColor += Im5*float3(.078,0,0);

The use weights for all 5 lightmaps to simulate the light that bounces inside the skin.

21

2) NVIDIA Approach

« Combine Blurs

diffColor = direct*float3(.233,.455,.649);
diffColor += Im1*float3(.100,.336,.344);
diffColor += Im2*float3(.118,.198,.0);
diffColor += Im3*float3(.113,.007,.007);
diffColor += Im4*float3(.358,.004,.0);
diffColor += Im5*float3(.078,0,0);

22

2) NVIDIA Approach

23

Lighting-Only

 Lambertian vs. NVIDIA

The left side is a standard dot(N,L) and the right is with the NVIDIA skin shading.

24

Why it works?
294
Red bleeds

Blue/Green not so much
Towards Light: Cyan-ish Ly °%
Away From Light: Red-ish 0o®

N

-

Key point: The normals that point towards the light tend to look more cyan-ish and
the normals that point away tend to be more red-ish.

25

Lighting-Only

 Lambertian vs. NVIDIA

Comparison of pure dot(N,L) diffuse to the NVIDI SSS technique.

26

2) NVIDIA Approach

 Looks awesome
* Final bluris 100x100

« Exact calculation of blur with 10k
samples

* Lots of passes

* Lots of blurs

* Lots of memory

» Cheaper way that looks close enough?

Their approach looks great, but is very expensive in both memory.

27

3) 12-Tap Approximation

NVIDIA

|
|

{llf

1hLd

\

28

3) 12-Tap Approximation

A B

NVIDIA

|-
Instead of using 5 gaussian blurs, we'll try to approximate that with a single 12-tap
blur. It’s not as good, but much, much cheaper.

29

3) 12-Tap Approximation

* From ShaderX7 (Hable, Borshukov, and

* Do a single 12-tap blur

float3 blurlitteredWeights[13] =

f
!

{ 0.220441, 0.437000, 0.635000 },
{ 0.076356, 0.064487, 0.039097 },
{0.116515,0.103222, 0.064912 },
{ 0.064844,0.086388, 0.062272 }.
{0.131798,0.151695, 0.103676 },
{ 0.025690, 0.042728, 0.033003 .
{ 0.048593,0.064740. 0.046131 },
{ 0.048092,0.003042, 0.000400 },
{ 0.048845,0.005406, 0.001222 },
{0.051322,0.006034, 0.001420 }.
{ 0.061428,0.009152, 0.002511 }.
{ 0.030936, 0.002868, 0.000652 },
{ 0.073580,0.023239. 0.009703 }.

float2 blurlitteredSamples[13] =

f
!

£ 0.000000, 0.000000 },
{ 1.633992,0.036795 }.
£0.177801, 1.717593),
£ -0.194906, 0.091094 !,
(-0.239737,-0.220217 }.
£ -0.003530,-0.118219 },
{ 1.320107,-0.181542 }.
{ 5.970690, 0.253378 }.

1 -1.089250,4.958349 1.
{-4.015465,4.156699 1.
{ -4.063099, -4.110150 }.
(-0.638605, -6.297663 }.
{ 2.542348,-3.245901 }.

Check the ShaderX7 chapter for more detail.

30

3) 12-Tap Approximation

float3 blurlitteredWeights[13] =

f
]

{ 0.220441. 0.437000. 0.635000 §.
{ 0.076356. 0.064487, 0.039097 §.
{0.116515,0.103222,0.064912 },
{ 0.064844,0.086388. 0.062272 .
{0.131798,0.151695, 0.103676 }.
{0.025690, 0.042728, 0.033003 }.
{ 0.048593.0.064740, 0.046131 }.
{0.048092, 0.003042, 0.000400 .
{ 0.048845,0.005406, 0.001222 .
{0.051322,0.006034, 0.001420 }.
{0.061428,0.009152, 0.002511 §.
{ 0.030936. 0.002868. 0.000652 §.
{0.073580,0.023239, 0.009703 }.

31

3) 12-Tap Approximation

float3 blurlitteredWeights[13] =
s
1

{ 0.220441,0.437000, 0.635000 }.

32

3) 12-Tap Approximation

float3 blurlitteredWeights[13] =

s
v

{ 0.076356,0.064487, 0.039097 },
{0.116515,0.103222, 0.064912 §.
{ 0.064844, 0.086388, 0.062272 },
{0.131798,0.151695, 0.103676 },
{0.025690, 0.042728, 0.033003 }.
{ 0.048593.0.064740, 0.046131 }

{ 0.048092.0.003042, 0.000400 }.
{ 0.048845,0.005406, 0.001222 .
{0.051322,0.006034, 0.001420 }.
{ 0.061428.0.009152,0.002511 }.
{ 0.030936, 0.002868, 0.000652 }.
{ 0.073580, 0.023239, 0.009703 }.

33

3) 12-Tap Approach

* A: Separate Blur

34

3) 12-Tap Approach

 B: Combined Blur

35

3) 12-Tap Approximation

» Separate Blur
— Render to Lightmap
— Blur Lightmap with 12 taps
— Render Final Scene
« Combined Blur
— Render to Lightmap
— Render Final Scene, with 12 taps from lightmap

* Both are fine

36

12-Tap Separate

37

12-Tap Combined

38

4) Bent Normals (?)

5 4
* Pretend R/G/B come from different Norrﬁa -

* R closer to Geometry, GB closer to Normal Map
 Diffuse Calculation 3 Times

06
Y

39

4) Bent Normals

40

4) Bent Normals

Notice how using different normals for R/G/B seems to cause some blue spottiness.

41

Why so blue?

* Dot Products

« At extreme angles, you can have cases where
diffuseR = 0 and diffuseB = 1

 Or vice-versa

oc
Y

That’s because you have cases where the blue diffuse is near 1 and the red diffuse is
near 0.

42

5) Blended Normals (?)

* Another Hack

» Diffuse(L,G), Diffuse(L,N), and Lerp

* Blue/Green stays put, Red bleeds

« Can have Red but no Blue/Green

* Can NOT have Blue/Green but no Red

Another approach is to do a diffuse calculation for the Geometry and Normal
Mapped normals, and lerp between them taking more red from the Geometry
normal and more Green/Blue from the normal mapped normal.

43

5) Blended Normals

44

Still Kinda Blue

-~

‘» =
3
&\
N
N\
\ N\

45

Recap

1. Standard Diffuse
2. Nvidia Approach
3. 12-Tap Combined

* Do 12-Tap blur as separate shader.

3a. 12-Tap Merged

* Do 12-Tap blur in final render pass.

4. Bent Normals
5. Blended Normals

.

46

1) Straight Diffuse

a7

2) NVIDIA Approach

48

3a) 12-Tap Separate

49

3b) 12-Tap Combined

50

4) Bent Normals

51

5) Blended Normals

52

53

54

3a) 12-Tap Separate

55

3b) 12-Tap Combined

—
AN

56

T

4) Bent Normals -

-

5) Blended Normals

‘» =
3
&\
N
N\
\ N\

-~

58

What did we do?

» Cutscenes:

— 3b) 12-Tap Combined
* In Game

— 5) Blended Normals

— 12-Tap Combined cost .4ms per head
— Difference didn’t balance the cost

59

Cutscenes

60

Cutscenes

Sometimes, in cutscenes, the shots get pretty close, so we need the quality.

61

Normal Gameplay

You spend most of normal gameplay staring at the back of Drake’s neck, so a separate
pass for SSS was not worth the cost.

62

Limitations

 Resolution
« Seams

63

Conclusion

* SSS really helps

« Do what makes
sense for you

* Do better than Blinn-
Phong

64

Hair

65

Hair 7

Hair éf/

+ Stolen from Thorsten Sheuermann

— http://developer.amd.com/media/gpu_assets/Scheuermann_HairSketchSlides.pdf

« Kajiya-Kay

67

Specular Off

68

Combined

69

Notes

» Slight Wraparound Diffuse
Kajiya-Kay Specular

No self-shadowing

— Looks into largest cascade w/extra bias

Diffuse Map as Specular Mask
— Partially Desaturated

Deferred lights use Blinn-Phong

70

Conclusions

» Anisotropic
* Do better than Blinn-
Phong

71

Cloth

72

Cloth

73

Diffuse-Only, Right?

74

Separated

Final

Diffuse

Specular

75

Specular

 Fresnel?

76

Cloth

A

include Cloth and Cardboard”

— Nope!

— Sidenote: Cardboard is actually really shiny
* Cloth has some Fresnel too

&
» “Examples of completely diffuse materials™

77

U2 Cloth

78

U2 Cloth

* Final

79

OurCloth()

{
VdotN = saturate(dot(V, N));

Rim = RimScale * pow(VdotN, RimExp);
Inner = InnerScale * pow(1-VdotN, InnerExp);
Lambert = LambertScale;

ClothMultiplier = Rim + Inner + Lambert;
FinalDiffuseLight *= ClothMultiplier;

80

Cloth /j

* Not based on light direction ’
* Looks better than nothing

« Hanno: “Doesn’t look that great, but it's hard to
screw up.”

81

Conclusions

* Do something,
anything

82

5 Secrets

83

Secret #1

The left shot is one of the first released screenshots before a lot of the tech got in.
The one on the right is what we shipped. The one on the left has lots of hacks that
we eventually took out, such as that orange glow around Drake’s skin.

84

Hacks Don’t Work!

» Hacks look great in still images.
* Don’t work when you move the light/camera.
* Photoshop tricks only work in stills

85

Secret #2

» Avoid Wraparound Lighting Models
» Afew exceptions (l.e. Hair)
» diff=.5+.5*dot(N,L)

— As opposed to: diff=saturate(dot(N,L))
» VFX/Photography: Ignore this point

86

Secret #2

 Lambert.

* Looks too
crunchy.

87

Secret #2

* Wraparound

* Do you want
your key light to
look like this?

* Looks ok for
ambient.

88

Secret #2

* You want this.

89

Secret #2

 With SSS
* Looks fine.

* Disclaimer for
Film /
Photography

90

Harsh Falloff

» Harsh Falloff is your friend
— If you use it right

* Don’t wrap light to make skin softer
 Instead change your shading model
* Doesn'’t apply to VFX and Photography

91

NVIDIA Demo

Notice that the NVIDIA demo has a harsh falloff. It looks great if you do everything
else right, which is why that demo is the gold standard for skin in realtime.

92

Secret #3

* Avoid Blurry Maps on Faces

» Have detail in Diffuse Map

* Have crazy detail in Normal Map
* It should look terrible in Maya

93

NVIDIA Demo

Since he looks fleshy, you would think that he has blurry maps.

94

NVIDIA Human Head Maps

» Diffuse Maps

95

NVIDIA Human Head Maps

* Normal Maps (world space?)

96

NVIDIA Human Head Maps

» Don’t paint soft maps
* Paint very crunchy detailed maps
 Let lighting model soften it

In the demo, they have extremely detailed maps and they use the lighting model to
soften it.

97

Heads

» Softening via lighting model.

IMO what makes skin look right is how light bleeds around the normals. If you paint
soft maps with no detail in the normals, it just looks flat.

98

Maps

* Crank the detail!

Notice that there is more detail in the shot on the right. For U2, we really cranked
the detail in the maps and the strength of the normals and then let the lighting model
soften it.

99

Secret #4 /Z/r

i

5

* Don’t bake too much lighting into diffuse S
» Especially AO
« Becomes Unlightable

100

Drake’s Shirt

* Looks fine in Sunlight
* Very boring in Shadows

101

Drake’s Shirt . e

 Create Light Rig
« Ambient Light

102

AO into Diffuse

* Apply to Diffuse
* Better Ambient
 The Catch?

103

The Unlightables

* (151/255)"2.2=0.315

151

« (35/255)"2.2=0.0126
o 25x!!
* Full histogram in ambient

35

Don’t bake too much AO into your diffuse maps.

104

Solution

* Leave AO map separate

« Can be lower-res

+ direct=diffuseMap*diffuseLight N
« ambient=diffuseMap*aoMap*ambientLight |)
- diffuseColor=direct+ambient e]

105

The Unlightables /j

Contrast between Sun and Shadow

Doesn’t happen if your diffuse maps have too
much black

Tech isn’t enough for HDR Lighting
HDR vs. Flat and Contrasty

You get HDR lighting from having high dynamic range in your LIGHTING. | see a lot of
games that have all the tech for HDR lighting, but it still looks flat. The reason 99% of
the time is that they have too much black in their textures. For an example of a game
doing a really good job of managing their textures, check out Mirror’s Edge.

106

Secret #5 /Q/r/

« Make sure your AO and Diffuse match’ =
* We screwed this up
* Don’t play telephone

107

Chloe-Intro

* White Direct
* Yellow-ish Ambient

108

Chloe

 Direct Too High (White)
« Ambient Too Low (Yellow)

.

109

Drake /[‘/})

 Direct Too Low (White)
« Ambient Too High (Yellow)

110

Where’s his tongue? o

Go through the cutscenes again and look for Drake’s tongue. You’ll see what | mean.

111

Conclusions //éf

« Custom Shading Models

« If you tried these things in the past
— Take a second look if your lighting has improved

 Linear-Space Lighting

I’'m a big fan of custom lighting models (i.e. beyond Blinn-Phong). Btw, doing proper
Linear-Space Lighting is more important than everything in this presentation
combined.

112

References

» Practical Real-Time Hair Rendering and Shading, Thorsten Scheuerman
Sketch, 2004
— http://www.shaderwrangler.com/publications/
+ Efficient Rendering of Human Skin, Eugene d'Eon, David Luebke, and Eric Enderton,

Eurographics 2007
— http://http.developer.nvidia.com/GPUGems3/gpugems3_ch14.html

* Fast Skin Shading, John Hable, George Borshukov, and Jim Hejl, ShaderX7, 2008
— http://www.shaderx7.com/TOC.html

113

114

