
1

This talk is mostly about improvements in texture compression and deferred lighting
on consoles.

2

The talk consists of two major parts: texture compression and deferred lighting. Also
several minor improvements will be mentioned.

3

4

There are two subparts of the texture compression part: compression of color/albedo
textures and proposed improvements to normal maps compression.

5

Nowadays all color textures are mostly used as albedo textures in the lighting
pipeline, despites of good old times of Doom and Quake.

Despite there are still many engines with precomputed light maps and even complete
prebaked lighting solutions (e.g. Rage from id software), majority of modern engines
try hard to stick to the most robust dynamic lighting pipeline in order to provide the
most convenient tools for artists, thus simplifying the game development process.

So the color textures for the latter engines mostly represent the albedo of the surface
it describe.

Thus, the color depth and the color space of these textures become an important
discussion topic in this talk.

The very first and important step is to change the texture authoring pipeline to the
higher precision in order to be able to manipulate with source texture with no
precision loss after it’s been authored once. So we use a 16 bits/channel mode in
Photoshop for texture authoring. This allows us to change the color space or
histogram of the texture with no consequences both in the Photoshop and in our in-
house texture processing tools.

This mode has mostly the same authoring options as the usual 8 bits/channel sRGB
authoring mode. That means that the switch is mostly transparent for artists.

The manipulations proposed on the following slides might make the quality worse if
the source texure is 8 bits/channel! So it is very important to have a source texture

6

authored in 16bits/channel from the very beginning.

6

The first proposed manipulation is the color range renormalization.

Usually artists do not care about the quantization artifacts produced by block
compression and/or low-precision quantization (that happens e.g. in DXT block
compression). The most important point in authoring process is to achieve a similar
looking texture in a usual game lighting. However dark textures might show very
noticeable and disturbing artifacts under strong HDR lighting conditions.

Thus we decided to introduce a range renormalization for color textures behind the
scenes. That significantly reduces the color banding and deviation introduced by 5:6:5
quantization and block compression of DXT format.

We store the original minimum and maximum limits into the resulting texture in
order to be able to reconstruct the source texture created by the artist in the shader.
That means that for each renormalized texture we set two additional shader
constants in order to rescale the results of texture lookup.

7

Here is the result of renormalization and the corresponding histograms of the original
and the renormalized textures.

Note that the renormalization of 8b/ch source texture would produce a quantization
in the renormalized histogram, thus leading to a larger color distortion during 5:6:5
quantization stage of DXT compression.

8

The left most image shows the results for simple DXT-compressed texture under
strong lighting conditions. On the right most one there are results for the
renormalized and then DXT-compressed texture. Note that the blocky color artifacts
are significantly reduced.

The texture appearance is not changed due to reconstruction of original range in the
shader.

9

The most of texture authoring software work in sRGB space. This is the native space
of the display and it is perfectly represented in 8 bits.

Also there is generally accepted opinion that the color textures should be stored in
sRGB color space too.

The interesting fact that there are two color spaces supported natively for free in the
modern GPU. That means we can easily jump from one to another with no
performance impact.

That fact arises a very interesting question about the color density in each color
space. The density of the color space shows the quantization interval for the
considered color space for a particular color range. In order to answer this question
we can solve the equation of densities deduced from comparing the derivatives of
each color space transformation in linear space.

The color transformation for linear space is obviously an identity transformation. The
transformation from gamma space is a power function.

By solving this equation we can acquire the resulting density median for these color
spaces. It shows the point of equal density of both linear and gamma space. This
point is in the linear space. This means that the linear space has better precision
above the value 116/255. And the gamma space is more precise below it.

So, we use the more appropriate color space for each particular texture judging by
the texture’s histogram.

The rule of thumb that works for us is to switch to linear color space each time the
number of texels above the median point in the texture is more than 75%.

10

It is also generally correct for Xbox 360. However we need to take into account a
different gamma curve used by Xbox’s GPU. It is a piecewise linear approximation to
the power function of gamma transformation.

This shifts the choice of color space even more towards the linear space. The median
is lower for piecewise linear gamma curve: 90/255 (in linear space). That means it is
25/255 in gamma space! So, keeping the rule of thumb the same (if >75% texels are
above the median) leads us to the conclusion that the majority of textures could be
beneficially stored in linear space for this platform.

On the other hand it solves another very important issue of the Xbox 360’s GPU
related to gamma-space textures automatically. Every time the texture stored in
gamma space is fetched in the shader, the GPU does the digamma and then stores
the result back into 8 bits into the texture cache. This is a default behavior and it
definitely introduces a great precision loss. In order to avoid the unwanted
quantization, one could customize the texture format and specify the desired filtering
precision by adding _AS16 suffix to the format (see the Xbox 360 documentation for
more information). But that would definitely lead to much higher texture cache
pollution and a consequent performance degradation.

However storing the majority of textures in linear space for this platform definitely
solves this issue and further improves the color precision.

So as a conclusion we’d like to highly recommend using linear space textures for Xbox
360.

11

This is an example bright gradient texture (all colors are above the median) stored in
16 b/ch shown on the left most image. The middle image shows the same texture
stored in gamma space and exaggerated in order to show the color banding on the
usual display. The right most image shows the original texture stored in linear space
with the same exaggeration.

It clearly shows the benefit of storing the bright textures in linear space. Note that
this exaggeration could easily happen under some strong and/or contrast lighting
conditions and using contrast tone mapping operator, like a filmic tone mapping.

12

The rest slides of the texture compression part of the talk are devoted to the
compression of normal maps.

Historically, normal maps are being represented as a color maps. However the recent
research in this area showed that the precision required to represent normals is much
higher and heavily depends on the lighting conditions and the material properties.

As normal maps are usually a result of the matching process of low-poly and high-
poly model, it is always possible to extract the normals of a very high precision.

Thus we recommend to modify the exporting tool you use in order to produce a
16bits/channel uncompressed normal map in order to be compressed further. This is
a very important step, as the 8bits/channel normal maps introduce a huge error from
the very beginning.

13

This is an example of quantization artifacts introduced by storing source normal maps
in 8b/ch format. As you can see, even the 8b/texel 3Dc compression gives much
better results with 16b/ch, as it introduces artifacts only at the compression stage.
However with 8b/ch normal maps the quantization error is accumulated from both
8b/ch quantization and the quantization introduced by the 3Dc compression.

14

Also we propose an improvement to the 3Dc encoder. The usual 3Dc encoder encodes the
normal map into a block-compressed two-channeled format. Each block consists of two alpha
channel blocks of DXT5 format leading to 8bit/texel compression.

However the precision of data represented with 3Dc compressed block can exceed the
precision of the ARGB8 format. The reason is that the majority of GPUs compute the
interpolated values between two anchors in higher precision rather than 8 bits. E.g. The
precision of interpolated values on Xbox 360 is 16 bits. This leads us to the point that the
source uncompressed normal map should be stored definitely with the precision higher than
8b/ch! However this change should be also reflected into the 3Dc encoder.

Besides that, all existing 3Dc encoders perform the block compression of each of two
channels separately, treating each block as a usual alpha block of DXT5 texture.

However while compressing normals, the error should be computed differently from alpha
compression. Besides that the correlation between x and y channel of 3Dc block should be
reflected in that error.

We propose to use a common error to measure directional deviations: ∆𝑁 =

𝐴𝑟𝑐𝐶𝑜𝑠
(𝑁𝑐∙𝑁)

𝑁𝑐 𝑁
. So, after two candidate pairs of

anchors for a 3Dc block are chosen, the normals are
decompressed, the z component is reconstructed and the
error between the source and the compressed normals is
measured.

15

However using this error we need to excess all the possible pairs of (x,y) anchors.
That correlation complicates and slows down the compression process. The
performance of 3Dc compression becomes production-unfriendly.

But as it was noticed during the development, the solution found by a common 3Dc
encoder during the compression of separate alpha-blocks, is very close to the
solution with the best error. Besides that, the “common solution” is the best solution
in many situations.

So, we propose an adaptive approach for the 3Dc encoding:

1. Compress the block with a usual 3Dc compression approach

2. Measure the directional deviation with the proposed error

3. If the error is higher than some threshold, initiate the improved compression
stage.

Note that we use an exhaustive search only around the “common solution”. We use
[v-4/255;v+4/255] interval for the exhaustive search, which is proved to be enough.

Thus the performance overhead introduced is minimal.

16

Here is a comparison of the 3Dc encoder (image b) and the improved 3Dc encoder
(image c). As the differences are hardly visible in a narrow color space of display, we
also provide a difference map (d). This map shows a pixel in green if our method has
smaller error compared to usual 3Dc encoder. The intensity is the difference in errors,
amplified by 5. Also it shows a pixel in red if our method provides a worse error for it.
As you can see our method is mostly surpasses the usual 3Dc encoder.

However this is a pure theoretical comparison. Let’s see how does it look in practice.

17

This is an image of the car rendered with the uncompressed normal map, stored in
RGBA16F format. As we mentioned before, the ARGB8 format is not sufficient for the
comparison with 3Dc format, as it introduces more quantization than 3Dc.

18

This is the image produced using a usual 3Dc encoder. You see the quantization on
the hood leading to the banding of specular reflections.

19

And this image is rendered with the improved 3Dc encoder. As you can see, the
specular reflections are much less banded.

Note that the format remains the same (3Dc)! The improvements are done only on
the encoder’s side.

20

21

We have a low-resolution software depth buffer since CryENGINE 2 and Crysis 1.

This significantly reduces both CPU and GPU workload, as we skip the complete
processing and preparation for rendering for culled objects.

However a complete software culling is less efficient, as we are able to render only
some very small and sparse part of the real scene on the CPU.

However we improved this approach on consoles.

Because of a thin GPU-CPU intercommunication layer (fast memory busses, no API
limitations, no virtualization), we are able to retrieve the z buffer from GPU with only
one frame delay.

We downscale the z buffer on GPU using a max() filter in order to preserve a
conservative visibility detection. On Xbox 360 we untile the downscaled depth buffer
on CPU.

Afterwards we construct mip levels with a minimum and maximum filter in order to
construct a hierarchical representation of the scene depth. This is a rather important
acceleration structure for culling. A similar algorithm is used in a vast majority of
modern GPUs.

Then during the visibility detection we project an AABB or OOBB of the object into
the screen space and detect the necessary mip level.

• If the object is completely occluded by the minimum level of this mip, we cull this

22

object out.

• If the object is in front of the maximum bound of the mip, it’s definitely not
occluded.

• If the object’s depth bounds intersect the minimum-maximum interval of this mip,
we intersect it with the depth information from the higher mip in order to detect a
precise visibility.

However on PC we use a complete software solution with some hand-placed low-
poly proxies made by level designers. This is due to the high latency in the GPU-CPU
intercommunication, which leads us to a 3-frames delay. This is unacceptable for
culling.

22

We use downscaled z-buffer.

During downscaling, we encode the linear depth value into two channels of the
ARGB8 texture.

The rest channels we use for SSAO computation of current frame and the temporally
accumulated results.

We compute the SSAO in half resolution of the screen. Then we do a bilateral
upscaling onto the screen.

We use Volumetric Obscurrance[LS10], which allowed us to lower down the number
of samples to 4!

Of course this approach is supplemented by temporal accumulation in order to
provide more samples over time. However we don’t use sophisticated cache rejection
schemes, rather a simple reprojection from previous frame.

Thus the performance achieved is around 1 ms on both consoles.

23

24

The color transformations are a very important tools for artists.

However creating the whole infrastructure of sophisticated professional filters and
other tools is usually an unaffordable task for the game engine.

The vast majority of image-wide filters (like color correction, contrast, brightness,
levels, selective colors etc.) can be represented as a mapping of an rgb cube into
another rgb cube.

This mapping can be represented as a 3D Look-Up Table [Selan07].

Taking into account the color-space consistency of all filters, the size of this LUT can
be very small.

After doing some experiments, we figured out that the size of 16x16x16 is more than
enough for the majority of color transformations.

Also it is possible to use the GPU-aided 3D textures, which speeds up the color
correction on consoles, making it only one texture look up.

25

Another very important part of the color grading is to provide a convenient workflow.

For that purposes we unwrap the 16x16x16 identity LUT into 16 slices and bake it
into the source image (which is usually a game screenshot).

This is a small chart, that consists of 16 slices, 16x16 each. This chart initially maps
each rgb color to itself, which is an identity transformation for the source screenshot.

After artist has finished working on the color correction of the image/screenshot, we
read back the chart and save it as a texture LUT.

Afterwards we load this LUT into the engine (2D or 3D texture, depending on
platform and API limitations) and perform the full-screen color transformation with
it.

This was an artist has completely identical results to what he/she wanted to achieve
in the image authoring tool.

26

This is an example of the image, which consists of several screenshots of the same
location and one small color chart in the corner.

This color chart serves as a probe for all color transformation and post processes an
artist applies onto the image.

27

This part of the talk is devoted to the deferred pipeline in CryENGINE 3.

Performance challenges will be discussed as well as some new solutions and
techniques.

28

This is an example screenshot of a real level in Crysis 2.

29

This is the diffuse lighting buffer corresponding to the screenshot.

30

This is the specular lighting buffer corresponding to the screenshot.

31

The deferred approach is widely known for its good property of decomposing the
lighting depth from the geometry granularity.

That means that the geometry is rendered before the actual lighting is done.

However, we have to store screen-space “fragments” for the deferred lighting into a
Geometry buffer (G-Buffer). This leads to much higher bandwidth.

32

This is a schematic chart showing the trade-off between the number of attributes
stored per fragment versus the shading flexibility and materials variety.

The forward shading is here for reference, as it looks like a perfect solution (the
highest materials variety vs the lowest bandwidth), however the forward lighting
does not decouple the complexity. That is inappropriate for modern games with very
complicated layered lighting, as shown before.

Thus there are three widely-known types of deferred rendering pipeline:

• Classic deferred shading (S.T.A.L.K.E.R. etc) [GPU Gems 2]. G-Buffer layout: depth,
normal, glossiness, albedo, occlusion and material index – 112-144 bits/pixel

• Full deferred lighting (aka Light Prepass) [Engel09]. G-Buffer layout: depth, normal,
glossiness and albedo – 96 bits/pixel (best case)

• Partial deferred lighting [Mittring09]. G-Buffer layout: depth, normal and glossiness
– 64 bits/pixel.

However, shortening the layout comes with cost: material variety becomes more and
more limited.

33

There are also some fundamental limitations of the deferred pipeline on GPUs:

1. The anti-aliasing becomes a super-sampling: need to store the G-Buffer
information per sample. Dramatically increases the bandwidth.

2. Arbitrary materials increase the amount of stored information per pixel
significantly. That’s why the materials variety is usually very limited.

3. The transparent objects should be rendered into a “deep G-Buffer” in order to
store all transparent layers for deferred shading/lighting. This is a similar problem
to anti-aliasing.

34

In CryENGINE 3 we have the following
layers of lighting:

• Indirect lighting

• Ambient term

• Tagged ambient areas

• Local cubemaps

• Local deferred lights

• Diffuse Indirect Lighting from LPVs

• SSAO

• Direct lighting

35

• All direct light sources, with and without

shadows

These layers are applied in the order enlisted above. However some of these layers
are optional depending on the area and lighting artist’s setup.

35

As it was described before, we use a minimal G-Buffer layout [Mittring09].

The layout consists of the depth (24bits), stencil (8bits), normal (24bits) and the
glossiness (8bits).

We use stencil to mark objects that lay in different areas.

E.g. we mark objects that should receive different ambient in different indoor rooms
with different stencil masks.

36

The very important lighting parameter is the glossiness.

On one hand, it represents the specular power. Without this value the specular
contribution from different lights cannot be accumulated together.

But on the other hand the glossiness together with the normal define a complete
lobe of the Phong BRDF. Note that without the glossiness, the BRDF is undefined,
thus the lighting cannot be performed.

However the consequent problem with this G-Buffer layout is the small variations of
materials, limited by the Phong shading.

Another very important problem is the representation of normals in the G-Buffer. We
store normalized world-space normals into RGB channels of the RGBA8 render target.

With this representation, the normals are stored with an insufficient precision.

37

This part it devoted to the new technique for storing normals in 24-bits G-Buffer
efficiently.

38

As it described before, with a current representation, the normals are stored with an
insufficient precision.

That leads to banding artifacts with all sorts of normals-related shading, like diffuse
lighting, environment reflection, specular lighting etc.

However talking from the information theory perspective, 24bpp should be enough
to represent a direction (essentially a point on the sphere) very precisely.

Seems like we’re doing something wrong.

If we count how many values we use out of these 24 bits, it turned out that we use
only values on the unit sphere out of a 3d grid 256x256x256. That leads us to the
usage of around 2%!

39

We propose the new method to utilize all values inside this unit cube.

Having the original normal (=direction), we take each cell of the cube the normal ray
intersects.

We compute the quantization error for every such a cell.

The quantization error tells us what would be the deviation of the center of the cell
compared to the original normal direction.

That shows the error if we store this direction into that cell.

Using that, we find the cell with minimal deviation from the normal’s ray on the ray’s
way.

Thus we find the best cell for some particular direction.

However finding this minimum is non-trivial brute-force search task, which cannot
be done in real-time for each normal we want to store into G-Buffer.

Thus we decided to prebake the result of the search into a huge cubemap of
directions. Each texel of the cubemap stores the distance to the best cell for the
normal with this direction.

The cubemap’s face should be larger than 256x256 in order to provide fine-grained
solutions for directions of normals.

The larger the cubemap the more precise the normals representation. However even
a cubemap of 2k x 2k is already problematic for performance and memory on

40

consoles.

40

However this cubemap has a lot of symmetry inside. The cubemap’s symmetry
comes from the inherited symmetry of the task itself. Indeed, the best cell solution
should be the same in all 8 octants. Also inside the octant there is a diagonal
symmetry for the same reason.

Using that fact, we extracted the unique part of the cubemap and saved it into a
small 512x512 2D texture. The emulation of cubemap lookup is done in the pixel
shader. The detailed shader code and the texture itself you can find in the appendix
of these slides.

The algorithm of outputting the normal into the G-Buffer is as follows:

• Prepare the texture coordinates for 2D lookup and look up the distance to the best
cell from the precomputed 2D texture

• Scale the normalized normal by this value in order to fit it into the precomputed
best cell

• Output the scaled normal into the G-Buffer.

41

This method has a lot of advantages.

• It supports alpha-blending, as it becomes a blending between two unnormalized
vectors, which is still linear and correct. However in case of alpha blending, we
lose the best fit solution in the end. But it is not that important for the production,
as the blending is mostly used for decals, smooth transitions and detail normal
mapping, where the smoothness of normals is not an issue.

• The reconstruction is extremely cheap (even for free): it is only one normalization,
which is done anyway in most of engines because of unnormalized results
provided by alpha blending.

• It is backwards-compatible with storing normalized normals solution. That means
that the best fit can be applied selectively per object, based on the reflectance,
smoothness, presence of detail normal maps etc.

Also a small note on the performance: the mip maps for the 2D texture are essential,
otherwise the texture cache thrashing becomes quickly apparent.

42

This is a small breakdown of the existing storage methods.

It shows how many bits it uses out of total number of 24 bits.

Both old techniques uses ~17 bits, which explains the low normals quality.

However the proposed technique uses almost the whole range of 24 bits, beating the
old ones with almost two orders of magnitude.

43

Here is a series of screenshots demonstrating the results of the new technique
compared to old ones.

44

Here is a series of screenshots demonstrating the results of the new technique
compared to old ones.

45

Here is a series of screenshots demonstrating the results of the new technique
compared to old ones.

46

Here is a series of screenshots demonstrating the results of the new technique
compared to old ones.

47

Here is a series of screenshots demonstrating the results of the new technique
compared to old ones.

48

Here is a series of screenshots demonstrating the results of the new technique
compared to old ones.

49

This part is devoted to the importance of BRDF normalization and energy
conservation.

50

It turned out that the section of this talk highly overlaps with the Physically based
shading model” course presented at the same time at the SIGGRAPH:

http://renderwonk.com/publications/s2010-shading-
course/hoffman/s2010_physically_based_shading_hoffman_b.pdf

I’d highly recommend to refer to this course in order to understand the advantages of
BRDF normalization in more details and examples.

Briefly speaking, here are the most important ones:

• Energy preserving: very important for HDR post-processing

• Consistent with non-analytical lighting, such as environment mapping

• Simpler artistic control over specular

51

http://renderwonk.com/publications/s2010-shading-course/hoffman/s2010_physically_based_shading_hoffman_b.pdf
http://renderwonk.com/publications/s2010-shading-course/hoffman/s2010_physically_based_shading_hoffman_b.pdf
http://renderwonk.com/publications/s2010-shading-course/hoffman/s2010_physically_based_shading_hoffman_b.pdf
http://renderwonk.com/publications/s2010-shading-course/hoffman/s2010_physically_based_shading_hoffman_b.pdf
http://renderwonk.com/publications/s2010-shading-course/hoffman/s2010_physically_based_shading_hoffman_b.pdf
http://renderwonk.com/publications/s2010-shading-course/hoffman/s2010_physically_based_shading_hoffman_b.pdf

Here are the results for different glossiness values for Phong BRDF. The reflectance
coefficient of the material remains the same in all images.

However please notice the intensity of analytic reflection coming from the sun and
how consistent it is with the precomputed environment lighting.

52

Here are some in-game examples of the consistency across the precomputed and
analytical lighting.

53

Here are some in-game examples of the consistency across the precomputed and
analytical lighting.

54

This part of the talk is devoted to the low-bandwidth, high-quality HDR pipeline on
consoles.

55

The ideal goal for us is to achieve the complete HDR rendering pipeline with no
additional bandwidth or performance overhead.

Thus we came up with RGBK compression for all our HDR buffers on PS3. We use
RGBA8 render targets for light accumulation buffers (both diffuse and specular) and
for the final HDR shaded scene render target.

We use custom blending with read-backs on PS3 in order to achieve proper blending
operations with RGBK encoding.

However it works unless you have some overlapped geometry to draw. This is the
only case with transparent objects for us. So, as we draw transparent objects in the
end, we decode the RGBK buffer into a fat ARGB16F render target before rendering
any transparency. This provided a small overhead, as the decoding is conjoined with
the full-screen global fog pass.

On the other hand there is no read-back capability on Xbox 360’s GPU. Thus we
render the whole scene into an ARGB16 render target in the EDRAM and resolve it
into an R11G11B10 texture in the system memory.

Thus the bandwidth outside EDRAM remains the same as for LDR rendering. The
R11G11B10 format gets expanded into ARGB16 in the texture cache by default. To

56

avoid that, we would recommend to remove _AS16 suffix from this format.

However even 11 bits per channel provide way too low storage precision for HDR
lighting in linear space.

56

Thus we decided to use a floating range window for HDR.

We define minimum and maximum values for HDR buffers and rescale all input light
parameters on CPU before submitting it to the GPU.

The range window is based on the average frame luminance. The maximum value is
adjusted empirically for each level.

However the lower bound can be computed analytically, based on the tone mapping
operator in use.

The idea behind that is that the HDR image becomes LDR in order to be presented on
the LDR display.

However the lower threshold for the majority of displays does not exceed 0.5/255.

Using this lower bound of the output color, we can apply an inverse tone mapping
operator to it and find a minimum HDR value analytically.

57

On this slide there are two tone mapping operators we use. The l is an average
luminance in these equations. The c is an input HDR color.

We use value for l from previous frame, as it changes smoothly due to eye adaption.

The exponential tone mapping operator is very sensitive to dark colors.

However the filmic tone mapping operator is rather moderately tolerable to dark
colors.

58

Here are the resulting screenshots made on Xbox 360 with R11G11B10 HDR buffers.

59

Here are the resulting screenshots made on Xbox 360 with R11G11B10 HDR buffers.

60

Here are the resulting screenshots made on Xbox 360 with R11G11B10 HDR buffers.

61

Here are the resulting screenshots made on Xbox 360 with R11G11B10 HDR buffers.

62

This small section is devoted to rather small, but extremely powerful concept of
tagging areas and volumes with deferred pipeline.

63

There is a common problem of light bleeding become apparent with the deferred
approach: the boundaries of lighting are not controllable.

E.g. the deferred light placed in one room can bleed through the wall into another
room.

Thus we decided to provide a tool for artists that they can specify a custom stencil
culling geometry for each light source in the scene.

This approach is very cheap provided that the clipping geometry is rather coarse and
the stencil tagging is very fast on consoles.

64

This is an example of how the clip volume works for some particular light.

65

This is an example of how the clip volume works for some particular light.

66

This is an example of how the clip volume works for some particular light.

67

This is an example of how the clip volume works for some particular light.

68

This is an example of how the clip volume works for some particular light.

69

This part of the talk is devoted to the problem of materials variety with deferred
pipeline.

70

The core idea is preserve the current bandwidth and interfere with the deferred
pipeline as less as possible.

The current G-Buffer layout can store only a Phong BRDF as it was mentioned before.

However in order to represent a complex BRDF, such as a highly anisotropic Ward
BRDF, we need much more lobes. This can be implemented by expanding the G-
Buffer layout and adding more information about BRDF.

However the whole lighting pipeline would suffer from that. Moreover, taking into
account the complex layered lighting and increasing data size stored in G-Buffer per
pixel, the bandwidth grows too quickly. This fact makes this approach unaffordable
for the actual game production.

However if we consider one pixel of the G-Buffer, we know a lot of fixed parameters,
such as normal, view direction etc. (note that for a given particular pixel it is fixed and
known at the G-Buffer generation time). Thus the BRDF can be defined as a function
on the sphere.

But something that is unknown at that time for us is lighting conditions.

71

So the general idea behind the approach is to do a Phong lobe extraction at the G-
Buffer generation time.

There are several advantages:

• G-Buffer layout, memory footprint and bandwidth remains the same!

• Support for arbitrary type and complexity of BRDF

• Completely orthogonal and transparent for the subsequent lighting pass

First, consider a microfacet BRDF model.

The Fresnel and geometry terms of this model can be completely decoupled from
lighting and applied in a subsequent shading pass per object.

Thus the part of BRDF that affects the lighting directly and cannot be decoupled from
the lighting pass, is the Normal Distribution Function.

We approximate the NDF of the BRDF with Spherical Gaussians in spirit of
[WRGSG09]. Note that most of common BRDFs have analytical formulas for this
basis. Another important fact is the compactness of the representation. E.g.
anisotropic Ward BRDF can be represented by only 7 basis functions in a vast
majority of cases.

72

After we’ve got a compact representation of the BRDF for current screen pixel, we
can extract the principal Phong lobe out of it.

In order to do that, we need to know lighting conditions for this pixel.

We approximate the lighting conditions with Spherical Gaussians per object.

The approximation is done on CPU. Similar lobes can be merged together at this time
in order to minimize the representation.

If an object is huge or long, we can prepare several lighting representations in
different places of the object and interpolate between them in the vertex shader.

So in order to extract the Phong lobe, we convolve each SG function of the BRDF
representation with each SG function of the lighting representation. We use the
result to weight the normal and fit the glossiness factor after each convolution.

Note that the SG basis is not orthogonal, so the cost is polynomial O(n*m), where n
is number of basis function representing lighting and m is the number of function of
BRDF representation.

After the normal and the glossiness are extracted, we output it as a usual Phong lobe
into G-Buffer.

Then we do a usual deferred Phong lighting with many lights. Note that normals and
glossiness are already adjusted to best approximate the BRDF by a Phong BRDF for
each particular pixel.

Thus the variety of BRDFs becomes completely invisible at the deferred lighting

73

stage. That fact itself unifies the pipeline and has a very positive performance
implications.

And we apply the Fresnel and geometry term in the end after the lighting is done.

73

So, the extraction pipeline is as follows:

• CPU: Approximate lighting conditions with SG for each object (e.g. in object’s
center or multiple points)

• Vertex shader:

• generate SG coefficients for BRDF representation

• Cull invisible SG lobes of lighting representation (based on hemisphere of
visibility)

• Pixel shader:

• Do a local rotation of BRDF based on normal maps (if any)

• Convolve each SG of BRDF with each SG of lighting representation

• Accumulate principal Phong lobe and output it

74

This is a diagram of decoupling the BRDF complexity from the lighting complexity.

As you can see, the BRDF complexity is completely eliminated from the lighting pass.

75

This is an example of the technology at work

76

This is an example of the technology at work

77

There are several obvious disadvantages of this technique:

• Lobes are extracted not precisely. Specular highlight appears slightly shifted due
to per-object lighting approximation

• However this turns out to be a rather small issue due to the human
perception limitations. Please see [RTDKS10] for more details.

• Essentially we do the lighting twice: the first time during the G-Buffer generation
pass, and the second time is the actual deferred lighting.

• However the first pass is hierarchical with merging and culling. And it is
executed only for pixels covered by objects with complex BRDF, which is a
reasonable cost.

Besides that, there are several obvious advantages of the technique:

• The G-Buffer remains the same!

• The lighting pipeline is unchanged.

• The materials pipeline stays unified, as deferred lights can be applied in-place for
objects with arbitrary BRDFs. That means we don’t need to shade it separately in
forward pass; we don’t need to store all shadow maps and compute many shader
permutations for forward shading with different number and types of light sources
etc.

78

This part of the talk is devoted to the aliasing problem in deferred pipeline and the
proposed solution to it.

79

There are multiple sources of aliasing in rendering pipeline.

Some aliasing artifacts such as jaggy edges can be addressed with some
postprocessing techniques, such as Morphological Anti-Aliasing.

However there are some fundamentally different sources of aliasing that cannot be
solved by postprocessing, as it require supersampling.

E.g. flickering of highly discontinuous geometry such as foliage or thin ropes are
caused by per-screen-pixel visibility resolution, which is considered too sparse for
such kind of geometry. So in this case the visibility should be resolved at higher
resolution with some supersampling technique.

Another source of aliasing can be discontinuities in shading, e.g. reflections of high-
frequency or discontinuous shadows etc. This means we need to supersample the
shading per pixel for.

80

However we noticed that in the majority of scenes, the supersampling is required
mostly only for distant objects, where the GPU fails to approximate shading/mip-
mapping/visibility per pixel.

Thus we propose a hybrid solution that solves different aliasing problems based on
the distance to camera (some other parameters could be taken into account as well
though).

We apply a post-processing edge-detection algorithm on close-up objects. That
solves the problem with edges. Note that there is almost no supersampling required
for near objects, as they are sampled and shaded at sufficient rate in screen space.

We supplement it with temporal supersampling based on reprojection of previous
results. This temporal supersampling is done only for distant objects.

We render different parts of the scene with different techniques and separate it with
stencil masking.

81

As the edge-detection algorithm needs to smooth the shapes of close-up objects
only. Thus we decided to make it as simple as possible.

So we compute the color deviation from 8 surrounding screen pixels in 4 lookups
with bilinear filtering and then decide how strong the current pixel should be blurred.

82

We use screen-space sub-pixel temporal camera jittering. That means we shift the
camera position with a subsample pattern in screen space for each frame. So for still
camera we can accumulate sub-pixel supersampling over time.

In case of dynamic objects and/or camera movements, we use cache miss philosophy
based on the depth changes across frames.

In order to accumulate super-sampled visibility on the edges, we check for depth
discontinuities in the frame’s depth buffer.

Please see [NVLTI07] and [HEMS10] for more details.

83

The reason is that the reprojection in it is based on the depth buffer. Thus it is
impossible to take into account shading-space local changes on objects. That might
lead to ghosting shadows, reflections and so on, if we apply it onto close-up objects.

84

This image shows two parts of the scene (“close-up” case and “distant” case) and
demonstrates how different techniques are applied onto different parts of the scene.

Please watch the supplementary video for more details.

85

This image shows two parts of the scene (“close-up” case and “distant” case) and
demonstrates how different techniques are applied onto different parts of the scene.

Please watch the supplementary video for more details.

86

This image shows two parts of the scene (“close-up” case and “distant” case) and
demonstrates how different techniques are applied onto different parts of the scene.

Please watch the supplementary video for more details.

87

This image shows two parts of the scene (“close-up” case and “distant” case) and
demonstrates how different techniques are applied onto different parts of the scene.

Please watch the supplementary video for more details.

88

This image shows two parts of the scene (“close-up” case and “distant” case) and
demonstrates how different techniques are applied onto different parts of the scene.

Please watch the supplementary video for more details.

89

Please watch the supplementary video for more details.

90

Improvements to textures quality on consoles was proposed.

We demonstrated a few solutions to several fundamental problems of deferred
lighting.

91

I’d like to thank all these people as well as Crytek GmbH for providing me the
information and time do prepare this talk!

92

??

93

94

95

96

The texture can be copied over from this slide or downloaded from
http://advances.realtimerendering.com/

Note that the 8-bits precision is sufficient if the best fit length is stored for the normal
divided by maximum component.

97

http://advances.realtimerendering.com/

Note that the G-Buffer pass is usually bound by vertex processing, so

98

99

