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Hello various rendering dudes.

“Hello, I’m Per.”

“Hello, I’m Sam.”

Etc.

We (DICE and Geomerics) have been working together to incorporate Enlighten2 into 
Frostbite engine. The experience shaped the development of both Enlighten and 
Frostbite, and the resulting architecture and workflows are what we intend to discuss 
today.

2



INTRODUCTION (Sam)

Radiosity has always been an exciting topic! There are a massive number of papers on the subject. The sheer number of papers 
that exist gives a near-continuum of algorithmic options, in which we can see some common categories of algorithms emerging 
as clusters. (eg. Photon-mapping, VPLs, voxel-grid based methods). If you have an idea for an awesome radiosity algorithm, you 
can probably find a paper somewhere that does something similar and learn the lessons from them. Or another good approach 
is to start by gluing together ideas from different papers. 

In recent years, it’s probably fair to say most focus has been on finding new novel algorithms, particularly ones focusing on fully 
dynamic “real time” solutions, and again particularly ones primarily  based on the GPU (e.g. Crytech, LPB2 (Evans), VPL-based, 
“instant radiosity”, etc). I won’t be adding to this stack in this talk. 

This talk is less about demonstrating an algorithm and more about discussing the surrounding architecture and its use in 
practice.  I am also going to claim that the architecture is the more important element to get right.

So what do I even mean by radiosity architecture? It’s the structure within which the algorithms operate. 

This is orthogonal to algorithmic category in some sense. You should be able to change your algorithm independently of your 
architecture.  This is very true of Enlighten which fairly regularly undergoes algorithmic changes, while it’s overall structure 
remains static. For example, the first version of Enlighten ran on a GPU. Enlighten 2 runs on a CPU. Enlighten 3 might go back the 
other way again. We may remove the precompute, or we may add Wii support. I’m not sure yet, but these are things that only 
affect the algorithm, not the architecture.

The key point for this talk is that the architecture is itself a very power tool, which I will illustrate with examples. If you bear in 
mind that if you have an awesome idea for a new radiosity algorithm that will blow everyone away, do consider the architecture 
as well. And I would expect that if you implemented the 4 architectural features I will cover, you’ll get a reasonable and 
workable solution for even fairly basic algorithms.

DICE and Geomerics have been working together since close to the birth of Enlighten. The integration into Frostbite showcases 
the use of real time radiosity.  We will describe how our pipeline & runtime have been set up to work with Enlighten, and show 
the workflows we have created to use dynamic radiosity.

3



AGENDA

This talk is essentially me then Per. 

I’ll do an overview of Enlighten then talk about its architecture. 

Per will then demonstrate how and why Enlighten was integrated into Frostbite, and 
how it shows up in the art workflows.
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ENLIGHTEN OVERVIEW 1/2

All good projects need a solid direction, and this is a summary of what Enlighten is trying to achieve which is 
ultimately reflected in the architectural decisions we made. You can expect the architecture we use to change if 
you alter these working assumptions.

Current console cycle - constrained by hardware 

The main feedback we got from pre-release versions of Enlighten running on GPU was that GPU wasn’t a viable 
resource to use. It’s already over-utilised on the consoles, isn’t actually that powerful. In addition,  the DX9-class 
hardware the consoles uses constrains our algorithmic options. Memory also very limited. So multi-core is clearly 
the best target for us. Another point to note is the huge range of abilities between the 3 targets – so scalability of 
our solution is vital (both up and down). 

Always trading off quality with flexibility

There is some imaginary line with two poles. At one end you have offline lighting – great quality, terrible iteration 
time, not real time. And at the other you have  “real time without precomputation” –great iteration and 
gameplay, but low quality lighting. Note you don’t get to have your cake and  eat it. Real time costs visual quality, 
but so does poor iteration time. So Enlighten2 is a midpoint. We do some pre-processing to keep visual quality 
up, so our lighting does not fully reflect moving geometry without the addition of some smoke and mirrors. But 
we do provide fast iteration through real time lighting. In short, we focus on good quality, scalability and 
flexibility, not fully dynamic at all costs.

Frostbite wanted a lighting solution with fast iteration times and support for dynamic environments. Previous 
static techniques DICE used gave great results, but were painful to wait for lightmaps to build.  They wanted to 
give artist more creative freedom.

Art controls

There are many points at which artists can add value. The end goal is always to create beautiful, emotive, 
believable images, not physical realism. So where ever possible we allow artists control over all aspects of indirect 
lighting. For example, there are per-light indirect scaling/colouring controls so they can tweak the radiosity effect 
from each light source. There are also  global direct/indirect balance controls and radiosity tonemapping controls, 
amongst many others.
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ENLIGHTEN DECISIONS

These are the 4 key architectural features I’d like to dig into further today.

Point to bear in mind is that if you were to implement some algorithm that had these 
architectural features, it’d most likely either be realtime or very close to realtime. 

Will now walk through each in turn.
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This is the asset I will use as an example.

It’s similar to the sponza atrium. We built it internally and ship it in our SDK. 
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ENLIGHTEN Pipeline

This is a high level summary of the Enlighten pipeline.

Precompute

There are a number of new terms – I will attempt to unpack them as we proceed. The precompute in 
Enlighten is essentially a problem-distillation stage. We attempt to put as much magic into this as 
possible. Some details to be aware of now:

We break up the scene into “systems” – a system is a locally solveable problem but taken together 
they still provide a global solution. Each system outputs a small lightmap for part of the scene.

The precompute also setup “relighting” information – I will cover this in more detail later on.

Precomputing information is a tough compromise to make, but very important to getting near-to-
offline lighting quality for our target platforms.

Runtime

The key point (and one of my 4 architectural features) is that our runtime separates indirect lighting 
work from direct lighting work. The direct lighting is done on the GPU as usual, while all indirect 
lighting is done on the CPU (the current best place for target platforms). Both can run asyncronously, 
so you get good parallelism. And most significantly, the previous output of Enlighten is always 
available. So our output is cacheable. The GPU just composites with the latest results off the carousel. 
This is a massive optimisation, largely independent of algorithm that simply comes from using the right 
architecture. I’ll describe this further in a few slides time.

A final point: The separation is not just an optimisation – also allows a lot of creative freedom different 
integration options. Per will talk a bit more about this in his half of the talk.
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LIGHTMAP OUTPUT

We shall walk through an example shot in our runtime pipeline.

Note the split of direct and indirect lighting paths, with the dependence on a 
common description of the lighting in the scene. We have all the usual lighting types, 
plus some new ones. 

“Environment” is essentially a very low detail cube map. It gives you the same effect 
a simple image-based light would: Soft shadows, directional lighting. Nothing sharp.

“Area” lights are easy in Enlighten. Our tech essentially allows you to make surfaces 
glow and compute the bounce result. So an area light is pretty much the simplest 
form of input lighting for us.

Enlighten is careful to not restrict the API to predefined light sources. If you can 
describe the lighting incident on your geometry surface and point sample it, you can 
put it into Enlighten. For example, anything you can shade in a deferred renderer on 
the GPU can immediately be put into Enlighten. 
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This is the traditional direct lighting in this shot. It’s a simple cascade shadow map 
based directional light, computed on the GPU. This bit is nothing to do with Enlighten.

The choice of light and its implementation is essentially arbitrary.

Note the lack of direct environment lighting. Environment lighting (and other area 
lights) are handled entirely within Enlighten.
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This is the corresponding input to Enlighten. In this example, the two sets of data are 
computed entirely independently. 

The main runtime operation in Enlighten is to map a point sampled description of the 
lighting over the target mesh surface (shown above), to a lightmap or lightprobe 
output. This is the bounce. Anything you can express in these terms is valid input to 
Enlighten.

When generating the point sampled input, we provide several fast paths for common 
light types. Directional lights with precomputed visibility to static geometry is one of 
these options, which we use in this example. This provides a fast efficient method of 
generating the input lighting that does not require any interaction with the GPU-
rendered sunlight, although we could have chosen to point sample that lighting 
instead. 

You may note that as well as the directional light, there is also radiosity lighting in the 
point sampled data. This is the previous lightmap output being fed to enlighten as an 
input light to generate a second bounce. This is how we generate multiple bounces. 
I’ll return to this later on.
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This is what the previous point sampled data is mapped to. In some sense, this is the 
raw lightmap output from Enlighten, before any interpolation, albedo modulation or 
directional relighting is applied.

The shot shows the generated lightmap over the “target” mesh for this scene.

Note how low resolution the output is. You can see the effect of the skylight (blue) 
and the bounced directional light.

Although low detail this resolution captures the essence of the indirect lighting. 
Significant soft shadows are present, and the lighting gradients can be seen quite 
clearly.
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This shows exactly the same lighting data, but applied to the (white untextured) detailed 
geometry, together with normal maps and indirect specular.

Note how much the basic lightmap output gives you when taken together with these 
additions. 

In particular, hardware interpolation gives you a lot as long as your output lightmap is very 
‘clean’. This cleanness is important - we scale linearly with output texels, so each texel really 
has to work for it’s place in the lightmap. If you want a very dense output format, as we have, 
you can’t afford noise. 

Much of the detail is filled in by the off-axis relighting. Simple variation in normals gives you a 
lot of lighting variation.

There are multiple output formats for Enlighten. This particular screenshot is using our 
“directional irradiance” technique which is a mid point between a full spherical output (e.g. 
Spherical harmonics – complete spherical lighting data) and direction-less irradiance. We 
support all 3, but prefer the directional irradiance as a good balance point in practice.

The specular effect is a simple ‘imaginary’ specular effect generated in the final shader. Think 
of it as a phong specular model parametised by the strongest lighting direction. You only get 
one specular highlight, but your eye is very intolerant to errors in specular term. Believable 
specular results are far easier to obtain than “accurate” ones. So we prefer to give as much 
control to the user/artist as possible here. 
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And here we see the final composite. I’ve just added the textures and direct lighting 
back.

This was a brief introduction to our runtime radiosity pipeline. Per will talk through its 
use in Frostbite later on.

But now I want to move to the next architectural point: the modelling of a single 
bounce...
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ENLIGHTEN SINGLE BOUNCE

The key point here is that this is a big algorithmic simplification, and actually adds rather than takes 
away. Capturing the converged radiosity output is important – a single bounce is not enough. But I’d 
claim that modelling them through a feedback loop is just “The Right Way”.

Why is it a big win algorithmically?

1. Easy dynamic albedo. This is now modelled by modulation of the input lighting and 
independent of everything else.

2. Visibility/light transport much simpler to compute and compress. 

Both of these points are consequences of avoiding the cross-terms that occur when you attempt to 
compute bounce terms beyond the first, or the converged integral. There are some very elegant 
methods for computing the fully converged integral (based around the geometric series solution S = 
(1-T)^-1), and if you never intended to update some aspect of that solution (including the lighting!) 
maybe this would start to look more attractive. But in practice I don’t expect this to be important 
enough.

It’s worth noting that convergence for radiosity is quick. We typically see convergence in 4 frames or 
less. So, if you were to update one bounce a frame at 60fps you’d get  a lag of 4*1000/60 = 66 ms. You 
can’t see this in practice. The decoupled direct lighting also helps you here, as this is correct even if the 
indirect lighting is still changing. Even if there is a lag, your direct lights are always lag-free. It’s harder 
to perceive the lag in indirect lighting in this setting, and only becomes apparent with momentary light 
sources (grenades, muzzle flash, etc).
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The word “Lightmap” does tend to conjure up images of large pages of memory-hogging textures. Enlighten lightmaps are 
actually really very small and very densely packed – there is very little wastage. This is important as memory footprint and 
bandwidth usage for our output are low. The smallness primarily comes from only storing indirect lighting, and secondly, from 
using target geometry to simplify the uv surface area. The target mesh lightmap is not a 1-1 mapping of the original detailed
surface and the low numbers of charts allow us to get very high coverage.

We also support a number of different output texture formats that all share the same layout. So you can swap algorithms easily. 

As well as cheap interpolation, and as I mentioned earlier, the key property lightmaps give us a cacheable output that allows us 
to amortise or completely avoid the cost of computing the indirect lighting. This is in contrast to many gpu solutions that are 
temporary or view-frustum only and incur a fixed cost regardless. This property gives us a wide range of scalability options. This 
is the real point of using lightmaps.

If you consider the different kinds of lighting environment you might encounter in a video game it becomes more apparent why 
this is helpful:

Modelling outdoor time-of-day lighting

Moving the sun motion triggers global lighting update (expensive), but  the sun moves slowly so we can stagger updates across
frames. Essentially, lots of work but we can do it gradually. This makes large outdoor works feasible.

Intimate indoor lighting

In a more detailed enclosed environment with rapidly updating lighting you will have to update more detailed radiosity more 
rapidly, but the restricted visibility helps you. You only need update visible areas. Streaming also becomes viable.

A zero-order integration

Another use to only use Enlighten offline. Turn all the quality dials up in your editor, and run everything in realtime there, then 
simply only store the output lightmaps for use at runtime. Enlighten effectively becomes a real time light baking solution. This
also allows you to target any platform that supports textures (wii, etc). 

“Parametised” lighting descriptions

It’s fairly common to re-use the same level, but with different lighting (time of day, weather changes, etc). Particularly in MMOs. 
Here you only need re-compute the radiosity on level load. 
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Lets take a closer look at the target/detail mesh projection. This is the target 
geometry authored for our arches scene. 

Unfortunately, I don’t have time to cover the algorithm used in any detail, but it’s 
quite a simple algorithm. In this area we’ve found that the simple approach is often 
the best. Artists need to be able to predict the behaviour, so complex rocket-science 
algorithms full of awesomeness that sometimes have unpredictable behaviour can 
actually make your tools harder to use!

The target geometry does two things:

1. It allows us to control and capture lighting at the resolution we choose, and not 
be bound by the geometry we actually want to relight.

2. It allows us to reducing the surface area and chart count which is a major
optimisation.

You can see that the mesh itself is very basic. The key thing is to get a mesh that has a 
simple uv surface area (low chart counts). This mesh happens to have a low tri count, 
but this is not important. Collision geometry or a low LOD is usually a good starting 
point, but they have slightly different requirements.
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This is the detail geometry with the lighting from the target mesh lifted onto it.

The lifting operation is actually an offline mesh-to-mesh projection, which as I said, is 
deliberately simple.

A big plus of this approach is that there is no need to author uvs for the detail 
geometry. These are generated for you during the projection. This is a rather cool 
property that may have other uses: by modelling easy to author target geometry you 
can skip uv authoring on complex detail geometry.

The downside of target geometry is that, despite being simple, is still an additional 
authoring overhead. We already have a set of UV authoring tools to simplify the 
process and are investigating automated approaches to generating this information.
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To recap, these are the 4 architectural features we’ve just covered. 

Separate lighting pipeline: Radiosity calculated independently of and asyncronously 
to rendering engine.

Single bounce: Big algorithmic simplification

Lightmaps: Compact, controllable and cacheable indirect lighting representation

Target geometry: Separate lighting resolution from geometric detail

I’ll now hand over Per to discuss their use in Frostbite...
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So I’m going to go through how we’ve set up the Frostbite Engine to run with 
Enlighten and how our pipeline and runtime support this architecture. But first I’m 
going to talk about why we started to work with Geomerics, and why we decided to 
go for a real-time radiosity solution in Frostbite.
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So why do we want real-time radiosity in a game engine? For us the main argument 
was to improve the workflows and iteration times.

We’ve been working with traditional lightmap techniques at Dice, and even if the 
results can look amazing in the end, it was just a very painful way of creating content . 
It’s not unusual that artists spend hours waiting for lightmap renders to finish. So we 
thought, if artist can spend their time working on actually lighting the game instead 
of waiting for lightmaps to compute, then perhaps the end results will look more 
interesting?

Another main argument is to support for dynamic environments. Video games are 
becoming more dynamic, so if we change the lighting in the game, we should also be 
able to update the bounce light dynamically.

And finally, the architecture that came out of integrating Enlighten into Frostbite 
turned out to be pretty flexible. The direct and indirect lighting pipeline is completely 
separate, so the architecture is pretty robust to general changes to the rendering 
engine. 
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Before we can run the game with dynamic radiosity, we have to do a few things in our 
precompute pipeline. 

I’ll go through these steps one by one.
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Enlighten provides two ways of representing the bounce light. Either via lightmaps, or 
via lightprobes. The first thing we do is to decide how each object should be lit.  

Static geometry is parameterized and lit with dynamic lightmaps. This geometry can 
bounce light, and is typically large objects that don’t move. 

Dynamic objects can only receive bounce light by sampling lightprobes, so they are 
typically moving around in the scene or just small and don’t affect the lighting to 
much themselves.    

In this scene you can see how we’ve separated static and dynamic objects. The
underlying geometry is used to bounce light, which is then transferred to all objects 
in the scene.
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One of the key features in Enlighten is to group objects into systems. A system is a 
collection of meshes that can be processed independently, and this really makes the 
radiosity a more local problem. Each system can be processed in parallel, the 
precompute can be distributed and runtime updates can be separated. 

We automatically define input dependencies to each system, which is a way to put 
restrictions on the light transport. So when we update the yellow system here, we 
only read bounce light from the green systems and we can forget about the rest.

We also use systems to control update performance. Large systems will have many 
pixels and it will take longer to compute, so by creating many small systems, we can 
spread out radiosity updates on several frames if we like. We typically update one 
system per CPU core every frame.
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We need to parametrize the world to get lightmaps uvs, and we do this semi-
automatically.  

For each static mesh we also have a low-poly target mesh that we use for lighting. 
The target mesh is manually parametrized, and we project the detail mesh onto the 
target mesh to generate uvs for the detail mesh.

We also pack a uv atlas for each system. Each system atlas is independent of all other 
systems, so we end up with one lightmap per system.   
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When we have generated systems and parametrized the geometry, we can generate 
runtime data in our precompute pipeline. 

The runtime data has information about geometry and form factors that we need to 
update the radiosity in real time.

There’s one data set per system, which is very nice if we want to stream data from 
disk. 

All systems can be processed in parallel, so we use Incredibuild’s XGI to distribute this 
build step. This is the only time consuming step of the precompute, but it scales 
pretty well with incredibuild. A typical final game level takes about 10 – 30 min to 
precompute.

Since this data only contains geometry information, so we only have to regenerate it 
when we change the geometry, not the lighting or the colors in the scene. 
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Let’s take a look at the runtime. A key thing with this architecture is that we have a 
separate render pipeline for direct and indirect radiosity. In fact, we update the 
radiosity on the CPU and we do the direct light & compositing on the GPU. 

Frostbite uses deferred rendering, so can we can render many light sources every 
frame. Each light source is fed to Enlighten and part of the radiosity bounce light.  

Another thing we do is to separate the rendering of lightmaps and lightprobes. 
Lightmaps are rendered in the forward pass, but lightprobes are added to 3D textures 
so we can render them deferred in screen. The reason we do this is so we don’t have 
to upload a unique lightprobe for every object we render, which tends to quite a few 
objects if you consider foliage, vegetation, particle effect and decals, so adding 
lightprobes deferred in screenspace is just simpler for us.
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The complete render pipeline looks like this. First, we update lightmaps & lightprobes
on the CPU, and we lift lightprobes into 3d textures. These 3d textures cover the 
entire scene.   

Next, we run the geometry pass, where we add bounce light from the lightmaps to a 
separate g-buffer which we LogLuv encode. We also use the stencil buffer to mask 
out all dynamic objects, so we know what to light with lightprobes later.

Finally, in the light pass, we first render all deferred lights, we then add the lightmaps
from the g-buffer, and finally we add the lightprobe 3d textures deferred in screen 
space.
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Let’s take a look at an example scene. This is the lightmaps and lightprobes generated 
on the CPU. 
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First we render the direct light sources deferred.
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Then we add the lightmap bounce light.
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Then we add bounce light from the lightprobes. We add them all together, to get the 
final compposite.
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Final composite
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(This is where we ran the video – Per gave a commentary over it during the talk).
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For people emailing: Please note the lack of the ‘t’ in Geomerics! Geometrics is a 
different company. I don’t know if they have a sam.martin there, but if they do they 
might be a bit confused by now . 
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