
1

2

Being able to work on the Toy Story 3 video game was a great experience, but we at
Avalanche also felt a big responsibility to try and create a video game that would live
up to the incredible film that Pixar was making. On the graphics side, for us this
meant developing the technology our artists needed to realize their vision and create
a look for our game that we would be proud of. The following scene is rendered in
our engine, and all of the art assets and animation were done by our artists at
Avalanche.

3

4

5

6

7

8

9

10

11

12

13

14

There are basically three problems to solve when implementing SSAO. I will talk
about what we do differently than others for each of the three.

15

Preview:

1) We use line integrals, which allows us to sample in 2D rather than 3D

2) This means we can rotate the sampling pattern in 2D

3) Since it’s in 2D, we can pair samples to better estimate invalid samples

16

Preview:

1) We use line integrals, which allows us to sample in 2D rather than 3D

2) This means we can rotate the sampling pattern in 2D

3) Since it’s in 2D, we can pair samples to better estimate invalid samples

17

Preview:

1) We use line integrals, which allows us to sample in 2D rather than 3D

2) This means we can rotate the sampling pattern in 2D

3) Since it’s in 2D, we can pair samples to better estimate invalid samples

18

19

20

This is an overhead view (the arrow shows the direction the camera is facing). The
blue dot is the pixel we are shading. The line going through the blue dot on the left
can be thought of as a wall parallel with the view plane, and the line on the right can
be thought of as a corner. The four dots are 3D point samples that are either
occluded or unoccluded.

21

The blue dot is still the pixel we are sampling. We imagine a conceptual volume
sphere surrounding it, and instead of sampling in 3D we sample in 2D. Each sample
has a corresponding volume, and depending on the depth of the sample a fractional
amount of that volume will be occluded.

While implementing SSAO I had many discussions with Peter-Pike Sloan, of Disney
Interactive Research. He introduced me to this idea, and he and Brad Loos published
a paper on it also.

22

23

24

The classic method treats every sample as either fully occluded or fully unoccluded,
leading to discontinuities (like when the viewpoint rotates, for example).

25

With line integrals, every sample results in a fractional amount of occlusion vs.
unocclusion, so the amount of occlusion changes smoothly.

26

27

Because the samples in the classic method are chosen in 3D but sampled from a 2D
texture, projection can cause the samples to not be well-distributed, which isn’t a
problem when using line integrals.

Also, the original sample contributes to the occlusion in our method.

28

29

Three things are needed when calculating SSAO with line integrals:

30

You need to know the (x,y) coordinates of the sample point, relative to the unit
sphere.

31

You need to know the depth of the sphere at each (x,y) sample point.

32

You need to know the volume of the sphere associated with each sample point.

33

With these three pieces of information, the algorithm is straightforward:

34

35

36

37

Do this for each sample to find the total occlusion.

38

39

40

41

Remember that each sample represents some volume of the unit sphere. No matter
which sample pattern is chosen, the goal should be to have all of the volumes be as
close to equal as possible, so that each sample has equal importance.

42

The most obvious pattern is to have all of the points equidistant from the center
(with the radius chosen to maintain equal volumes).

43

Occluders will be ignored until they are within the sample point radius, even if they
are within the conceptual sphere that the line integrals apply to. This results in
objectionable popping once occluders are inside the sample point radius.

44

One potential solution is to place the sample points on the sphere itself, so that there
will never be popping.

45

The problem is with this is that occluders smaller than the sphere’s radius will be
missed.

(An additional problem is that there is less accuracy at the edges, since the line
lengths are close to zero.)

46

The best solution is to use varying radii so there is good coverage everywhere.

47

Remember that we are going to rotate the sampling pattern to try and fake more
samples.

48

You can start with equally-spaced radii, but there should be some iterations to try and
get equal volumes. The different radii should also be randomized to avoid predictable
patterns. (I say “randomized”, but we actually chose ours to try and get the most
equal volumes we could.)

49

50

Luckily, given an (x,y) coordinate, this is easy 

51

52

Rather than calculating this analytically, there is a pretty simple “brute force”
method. Conceptually, create a 2D image of the circle. The higher resolution, the
more accurate the final results will be.

53

Rather than calculating this analytically, there is a pretty simple “brute force”
method. Conceptually, create a 2D image of the circle. The higher resolution, the
more accurate the final results will be.

54

Rather than calculating this analytically, there is a pretty simple “brute force”
method. Conceptually, create a 2D image of the circle. The higher resolution, the
more accurate the final results will be.

55

Rather than calculating this analytically, there is a pretty simple “brute force”
method. Conceptually, create a 2D image of the circle. The higher resolution, the
more accurate the final results will be.

56

57

58

59

For each pixel, decide which sample is the closest.

60

61

62

63

64

65

66

67

68

69

70

71

Our particular paired-sample pattern leads to this strange nonuniformity.

72

If each pixel uses the same sampling pattern with a different rotation, it approximates
using more samples than is possible in real time.

73

Rotating samples is easier in 2D than in 3D.

74

75

If you encode the rotations sequentially, it leads to clumps of samples.

76

77

78

79

80

Equally-spaced rotations are fine, but a bit of jitter isn’t a bad idea.

81

82

83

84

85

Faking extra samples results in noise, and can be dealt with using an edge-aware blur.
This isn’t different from any of the other SSAO methods, though, and so I won’t be
covering it.

86

87

Every part of Buzz Lightyear occludes the wall, which is not what we want.

88

89

90

This fixes the problem, but introduces a new one. Notice the halo around him where
all occlusion is missing.

91

92

The problem is that a flat plane should be ½ occluded, so setting unusable samples to
zero skews the results toward being too unoccluded, leading to the halos.

93

94

95

96

Using 0.5 works perfectly when there’s a flat plane parallel with the view plane, but it
breaks down with angled surfaces. In the figures above the result will be too little
occlusion, and if the occluder were on the other side it would result in too much
occlusion.

97

98

99

We could try to only use valid samples rather than try to guess what information
we’re missing.

100

101

102

103

We would like some way of intelligently estimating the value of samples that we can’t
use.

104

We have no way of knowing what information we’re missing, but we can at least try
to aim for the common case, which is a flat surface. In that case, all of the samples
should average 0.5.

105

If we choose our sampling pattern carefully, we can estimate the value for unusable
samples to “cancel out” valid ones. This assumes a flat surface, which is an attempt
to find a common case.

106

If we choose our sampling pattern carefully, we can estimate the value for unusable
samples to “cancel out” valid ones. This assumes a flat surface, which is an attempt
to find a common case.

107

In order to be able to estimate missing samples in this way, we need to put a
constraint on our sampling pattern that every sample is part of a pair. This finally
explains the strange “Orion” sampling pattern seen previously 

108

109

110

111

112

113

In some ways this doesn’t look as good as the previous tries, but it definitely leads to
the most consistently inoffensive artifacts of the methods presented here.

114

One unfortunate consequence of using paired samples is you don’t get as much radial
coverage as you otherwise would. In our specific case, we only get three “rings” even
though we are taking six samples per-pixel.

115

Review

116

There are a few gotchas that gave me quite a bit of trouble while implementing this…
Make sure to read this slide if you’re considering it! 

117

I’m not including any of our actual sample pattern data, but here is the basic shader
algorithm we used.

118

Again, if you are interested in implementing SSAO with line integrals I would strongly
recommend reading the paper.

119

120

121

In Toy Story 3, all light was dynamic. This includes the ambient light. First off, I want
to cover two basic approaches to dynamic ambient lighting.

Single color
Most basic model for ambient lighting. Works but really bad in shadow because there
is no directionality to it. The solid color makes everything look flat.

Cubemap
This gave us an improved look. The lighting was no longer flat, and normal maps
would show up in shadow. This is what was used in Bolt. But since it was a texture, it
wasn’t live tweakable, and the artists had a hard time painting the cubemap.

122

Irradiance Light Rigs

Basic approach used. We just set up a light rig along each axis and bake each of the
lights into a set of spherical harmonic coefficients. In the shader, I’d evaluate the
spherical harmonic coefficients with the pixel normal to get the ambient light color.
Even though this setup could be used for diffuse lighting, in this case, it was only used
for the ambient lighting.

123

Live Tweakable

Because the calculations were quick, we could recalculate the SH coefficients in real
time. This meant that artists could instantly see the changes they made to the light
rig. Almost immediately after the artists started using the light rigs, our ambient
lighting improved dramatically. Being able to see the changes instantaneously
provided feedback that let them tweak it until it looked fantastic.

Negative Light

Some artists used negative light intensities, mainly on the light pointing up from the
negative y direction. This darkened the bottom of the lighting and gave everything a
slight shadow. This was something I didn’t plan for but ended up being used on quite
a few levels.

Blend in real time

We could blend between different light rigs instantaneously without any additional
shader cost. This would make it easy to gradually change the ambient lighting or
blend between more than one rig.

124

Pictures showing 4 different types of lighting used. The lighting would switch
depending on the gameplay, plus the player could change them at will.

125

126

127

128

We not only use spherical harmonics for ambient light on the “next-gen” platforms,
but also on the Wii. Aside from the obvious advantages over a flat ambient color, this
also allows us to have fairly similar lighting setups on all platforms. Every frame, we
transform the lights into view space, and render a spherical texture that can be used
as a lookup. This has a few visual artifacts at steep angles at the edge of the screen,
but in general it looks quite good.

129

Full screen view of the last picture

130

131

132

133

The artists were fine with having one ambient rig per world, but they quickly noticed
the limitations of it. Since the lighting is the same throughout the world, this means
that a lot of places look too bright. This was especially noticeable indoors. Therefore,
there was a big push to do something about these situations.

134

Here is a list of some of my initial solutions to the problem. The first three were quick
hacks that didn’t accomplish much.

Blend between two rigs

Doing this only changes the global blend which means everything changes at the
same time.

Camera distance based blend

Blend the ambience to other rigs depending on where the camera is and how far it is
away from certain areas.

Same problem with blending between two rigs. It is global not localized.

Switch rigs based on location

We actually did some of this at the start. When you go to a dark area, pop it to a
darker ambience. It was easy to see the pop and it affected everything. This was a
good step in the right direction but not ideal.

135

Bake ambient lighting

Since our lighting is all dynamic and artist controlled, we couldn’t bake ambient light
at all. We had no pipeline to do it too.

136

Real time radiosity/global illumination

This could have solved the problem but we didn’t have the performance budget to
allow it neither did we have the time to spend developing a solution.

137

Assigned ambient lights

I tried this out. You split up meshes based on where the ambient lights are located
and assign a closest ambient light to each mesh. Then you just blend from the global
ambient lighting to the assigned ambient light based on for far the pixel is away.
Doing this would require splitting meshes and there were seam issues when there
was any amount of overlap. We already did it for our direct lighting so doing even
more splitting wasn’t worth the trouble nor the extra lighting cost.

138

So what can we do?

139

The experiments using traditional lighting failed to give me the results I wanted.
After I switched the ambient lighting to use spherical harmonics, I came back to the
problem and starting looking into ways to make it easier to solve. The key to this was
to assume that we only had two types of ambient light instead of one global one. This
second type was mainly to provide darkness or an alternative look that still matched
the same sunlight lighting. Since the spherical harmonics coefficients could be
blended, all I had to figure out was how to do the blend. This constraint ended up
being easy for artists to accept and allowed me to find a great solution.

140

This solution works by rendering volumes into a deferred buffer and blending
between the light and dark ambient rigs based on the buffer’s value. The primary
advantage is that artists have more control over the ambient lighting.

141

142

143

Artists place cubes or spheres into their worlds. When rendering in the engine, we
have a separate pass that renders these volumes into a render target. The color
written in this buffer represents the blend between the dark and the light ambient
rigs In the main pass, we look up the value, and lerp between the light and dark
ambient colors calculated from the spherical harmonic coefficients. To make it a little
faster, only the first 4 dark SH coefficients were used to calculate the dark color.

144

Spheres acted exactly like point lights in normal deferred lighting.

Cubes were a great fit for indoor areas but doing them was a little more complicated

I experimented with planes, but they weren’t as useful as I had first thought. I had
great ideas of cutting the world with this plane so everything on the other slide
would smoothly blend into the local ambient light. But the plane had to be visible for
it to work. In the end, the box did everything the plane did and was easier to
visualize.

I also added the capability to rotate and scale the volumes. This gave artists the
flexibility to make them fit into the world better.

145

The result of this shader should be a float between 0 and 1 representing the blend
factor between the two rigs.

146

To handle blending for overlapping volumes we just need a different set of blend
states. This allows the overlap to look correct.

147

All the material I read about deferred lighting only covered how to render point lights
and spot lights. I wanted a smooth falloff to the edge of the cube, and allow the
artists to place the volumes directly in the level. To get this falloff, I had to project the
cube into a sphere. After that, I could do the rest of the calculation like a sphere.

148

The reference contains more info into how this mapping looks and works.

149

Sphere Scale Bias

Since artists place the volumes in the world, the spheres are tessellated coarsely as
we didn’t need lots of vertices. When they get large, then there is a mismatch
between the edges of the sphere and the shader that calculates based on a perfectly
circular sphere. This is just a value that the artists bump up from 1.05 to increase the
sphere scale thus eliminating the seams.

Modify falloff curve

This just delays the distance before the falloff happens. The image on the left is with
no falloff curve. The middle goes out 0.5 before beginning the falloff. The right waits
to falloff until the length is more than 0.85. I didn’t experiment with any other curve
modification.

150

151

152

153

154

155

156

157

158

159

160

Separate Light Rig

The volumes show the amount of blend to the dark ambient rig. Instead, each
volume could blend the surface to it’s own unique ambient rig. Since we use forward
rendering, this is difficult to do, but with deferred lighting it would be easier.

More complex shapes

A cubemap lookup could be used so that the actual shaded shape can be different.
This would make it easier to fit these volumes into the world.

161

162

163

To achieve a similar look that the movie has, it was very important to define a list of
requirements for shadows

Game’s lighting and shadows are dynamic, so light maps are not an option

The main character needs a drop shadow to use as a cue for platforming

The world shadows have to be soft, high quality and inexpensive for consoles.

164

165

Only the main character used the drop shadow

See how buzz has a shadow projected straight down while Bullseye and Jessie still
have the world shadow projected from the sun’s direction.

The drop shadow is the only option for platforming, because it will always be visible
even if you walk inside a shadowed region.

It is projected straight down so that players can know where they will be landing after
jumping

166

The most inexpensive approach is to render it as geometry into the shadow mask

Without having to do any complicated physics calculations, we only find the ground
position and surface normal for the main character

From this, we generate a box with artist defined dimensions of width and height

Since the shadow map is square, we used width for the other dimension

The pixel shader used for this box is a simple shadow map projection

167

Unfortunately, this approach exposes some reprojection artifacts

168

Showing the actual box geometry shows the nature of the problem

The geometry is only used as a mask, so any reprojection that happens inside the
mask cannot be removed

169

The only option is to do a thickness check in the pixel shader

This checks the thickness of the box, which is the height of the box

One thing to be careful about is when the character is on non level surfaces

If there are any pits that lie outside the geometry’s thickness they will be clipped,
which might not be expected

Make sure the box’s thickness is large enough to cover those pits, but not too large

If the box’s thickness is too large then when the geometry clips with a wall, then the
wall will have the shadow projected on it

Since the shadow is projected straight down, it will project in the entirety of the box’s
bounds

In the picture shown, it is possible that the shadow could project entirely down the
columns supporting the stairs

A small thickness prevents this from happening

170

With this thickness check, the reprojection artifact is gone

171

These last three items is part of the world shadows

172

Many games pick this option, because it provides the best resolution and the most
realistic shadows

173

We are bound from picking this solution due to performance constraints

It is not possible performance wise to have both high resolution shadow maps and
expensive filtering to make it soft

The amount of geometry rendered in each cascade is very expensive when rendered
at high resolution

174

The main town area of Toy Story 3 enables the character to build buildings and add
customizations, which all add geometry to the scene

The scene can also contain a handful of rideable characters and cars

Each townsperson is fully customizable making it very difficult to instance

175

176

In many cases, the worst case performance for shadows in Bolt was over 12ms on the
Xbox 360

Artists also did not like the non realistic shadow outlines

Limited precision also prevented accurate grounding of the characters with their
shadow

177

This solution deliberately renders low resolution shadow maps

Shadow map generation cost low enough to handle complex scenes

This works due to the high quality filtering on the shadow test and in post

178

179

To show how it all works together, we will show a comparison

This is the final soft shadow look

180

This is what it would look like using no filtering in the shadow map or in post

The shadow map aliasing is very large

181

This now smoothes the edges, but the aliasing is still visible

182

The 4x4 PCF is just a regular 4x4 grid of Gaussian weighted samples

The aliasing is now removed, but the grid is now visible

183

The 5x5 cross bilateral filter removes the regular grid and makes the shadows very
soft

Since the cross bilateral filter was already being used in SSAO, we just combined the
shadow term with it

This means that this pass was added without any additional cost

Additional notes on 5x5 cross bilateral filter:

The filter itself is not very complicated

It is basically like a two pass 5x5 gaussian filter, but with a depth test on each pixel
fetched

It rejects pixels that have a depth difference larger than a specified threshold

Since the colors can be bilinearly sampled, you only need three color samples and
five depth samples per pass

There can be a mismatch between the color and depth samples, but this can be
resolved by gathering the filter weights for the color samples

For each depth sample that fails the threshold test the color contribution for that
pixel can be accurately removed from the bilinearly sampled color

It is possible to reduce the total number of samples per pass by combining the depth

184

and color buffers in either the shadow or SSAO passes

You would need at a minimum of a 16bit depth and at least 8 bits per shadowed
component

We had three components, so it did not fit a 32bit render target

I am sure someone else might find a solution to this in the future

184

This is what one part of the shadow mask in the previous screen looks like before and
after the filter

This filter makes the shadows very soft without the aliasing of the shadow map

185

To enable the post process filter for shadows, it needed to be deferred

186

All of these components are blurred together

The drop shadow for the main character used no PCF filtering, which looked good
enough after the filter

187

These are the steps for the deferred pixel shader

There are both a lot of ALU operations and texture fetches

The texture fetches still took longer than the ALU, but not by much

188

Despite how good the shadows now look, there were a few artifacts we experienced

189

In many of our indoor scenes, this artifact quickly showed up

After a bit of investigation, we found out that this was caused by how we do
pancaking

For an explanation of pancaking, take a look at “The Dark Art of Shadow Mapping”

by Tuft

Pancaking enables each shadow cascade to have more precision by clamping
the depth range based on the camera frustum

190

The sliver shows up because some geometry is getting clipped out in the first cascade

As you can see, the first cascade should show a wall like the second cascade

191

Pancaking has a problem where certain objects are clipped by the near plane of the
sun light’s frustum

This can be removed by putting in the vertex shader the line shown in the middle
figure

However, as you can see on the right figure that although the vertex is no longer
clipped, the red region is now not covered by that triangle

192

The solution to this is to assign objects to use a shadow cookie

This “bakes” the entire object’s z position to 0

This essentially removes any self shadowing for an object, so I suggest you only use it
on walls or other large occluding geometry that have this artifact

193

An oft explained artifact is incorrect self shadowing for shadow mapping

Shown here is a face that has a striped pattern that immediately does not look
correct

Even with a static depth bias this cannot be eliminated

Notes on slope scale depth bias:

For these surfaces, a slope scale depth bias should solve the problem

Unfortunately, the slope is too extreme to be removed

Console has no way to have a maximum bias, so we cannot use a very large value or
else we experience more artifacts when rotating the camera

194

This explains the problem with this face

In the shadow map, it is represented by only a few pixels

Therefore, there is no way to accurately measure depth across this face

195

The static depth bias is not effective as it will not work for all scenes

Even if you get a good value in the general case, it still won’t work for extreme cases

196

The solution is to have a dynamic depth bias based on the surface derivatives

Isidoro’s paper contains the sample code to get you started

This has an added benefit that we no longer needed to specify a static depth bias so
artists had one less thing to worry about

Notes on getting it to work:

If your derivatives crossed cascade regions, we would invalidate the dynamic bias and
instead use a scaled static bias based on the current cascade for that pixel

Also, for very level surfaces, the dynamic bias was still not sufficient, so we clamped
the bias to a minimum value

In the opposite case, some extreme angles produced a very large bias, so that was
also clamped to a maximum value

197

To give you a reference, this is what the shadow mask looks like using the static depth
bias

198

This is what it looks like with the dynamic depth bias

199

Unfortunately, it does not work perfectly

First, the stiped lines are almost removed, but still visible

Next, noise is introduced on some surfaces

Also, this noise can further affect certain surfaces and make triangles visible that
should be completely black

By examining those triangles, the shadow value is still close to black, so it might not
be visible in the final scene

200

As you can see, those artifacts don’t really show up

The 5x5 cross bilateral filter removes a lot of the noise and the rest of the striped
lines

Since the shadow is just a mask, then the visible triangles really don’t show up in the
end

201

To give you reference to what it was before, this is what it looks like with the static
depth bias

202

This is what is looks like with the dynamic depth bias and the 5x5 cross bilateral filter

203

There are still cases in which the dynamic bias still doesn’t work well

Some of the triangles and noise are visible in extreme cases

It is possible to reduce the noise or the visible triangles, but it would expose the
striped lines more

Therefore, this is the best solution so far

It still on average gave better results than the static depth bias

Tweaking the depth bias was no longer necessary, so there was no more peter
panning or significant shadow acne

204

205

Additional notes not mentioned in talk:

Notes on frustum culling:

We only frustum cull cascades 1 and 2 on one frame and then 1 and 3 on the next

Each time a cascade would perform frustum culling, it would cache an array of object
pointers to use for the next frame

It is possible that objects could be deleted between frames, so we need to verify the
object exists before rendering

The rendering is on another thread, so it is still possible for deleted objects to still be
rendered resulting in a crash

The solution was to double buffer the garbage collection list and delete the objects
with a one frame delay

The cache needs to be invalidated any time a level changes or when the camera cuts
to another location

Notes on contribution culling:

Already used contribution culling for the main camera.

206

Instead of clipping out if it was smaller than 1 pixel, we clip if it is smaller than 5, 15,
and 25 pixels for each successive cascade

Objects would clip out between cascades, but they were already too small anyways
to notice

Notes on depth only draw calls:

Most high performance engines should already have this

If you don’t, then this should be very important

In scenes of over 3 million vertices, it saved 10ms on the render thread and 0.5ms on
the GPU

Adding Occlusion culling:

This is also a prime configuration for occlusion culling for the main scene on the GPU

After the depth pass, send out the occlusion queries

After the SSAO and shadow passes run, then the queries should already be returned
to use when rendering the main scene

After writing the depth only draw calls, another engineer added occlusion culling in a
day

PS3 and 360 handle occlusion queries differently

206

The shadow map cost can be reduced by having better culling for the shadows

Temporal coherence for shadows could be used to reuse data between frames

The dynamic depth bias is not perfect, so more work might improve it

Lastly, It is possible to replace the 4x4 Gaussian PCF with another sampling scheme

Since the 5x5 cross bilateral filter works great in removing noise, a noisy PCF pattern
might give better results

207

208

209

