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Today’s Overview

* Fast creation of linked lists of arbitrary size
on the GPU using D3D11

* Integration into the standard graphics pipeline
— Demonstrates compute from rasterized data
— DirectCompute features in Pixel Shader

« Examples:
— Order Independent Transparency (OIT)
— Indirect Shadowing
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Building data structures from the graphics pipeline




Background

A-buffer — Carpenter ‘84
— CPU side linked list per-pixel for anti-aliasing

Fixed array per-pixel

— F-buffer, stencil routed A-buffer, Z3 buffer, and k-buffer, Slice
map, bucket depth peeling

Multi-pass
— Depth peeling methods for transparency

Recent
— Freepipe, PreCalc [DX11 SDK]

Advances in Real-Time Rendering Course
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Linked List Construction

« Two Buffers
— Head pointer buffer
+ addresses/offsets
* Initialized to end-of-list (EOL) value (e.g., -1)
— Node buffer
 arbitrary payload data + “next pointer”
« Each shader thread
1. Retrieve and increment global counter value
2. Atomic exchange into head pointer buffer
3. Add new entry into the node buffer at location from step 1

Y AR Advances in Real-Time Rendering Course
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Creating reverse linked list




Order Independent Transparency

Construction by Example

+ Classical problem in computer graphics

» Correct rendering of semi-transparent geometry requires sorting —
blending is an order dependent operation
+ Sometimes sorting triangles is enough but not always
: Multiple meshes interacting (many draw calls)
— Impossible to sort: Intersecting triangles (must sort fragments)

Advances in Real-Time Rendering Course
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Order Independent Transparency

with Per-Pixel Linked Lists /é)
« Computes correct transparency

Good performance

Works with depth and stencil testing

Works with and without MSAA

Example of programmable blend




Algorithm Overview ~C

0. Render opaque scene objects
Render transparent scene objects

2. Screen quad resolves and composites
fragment lists

—_—
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Step 0 — Render Opaque

* Render all opague geometry normally

Render Target
4
™
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Algorithm Overview
Y4

0. Render opaque scene objects #

1. Render transparent scene objects
— All fragments are stored using per-pixel linked lists
— Store fragment’s: color, alpha, & depth

2. Screen quad resolves and composites
fragment lists

Y AR Advances in Real-Time Rendering Course
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Setup y Q{/

« Two buffers ’
— Screen sized head pointer buffer
— Node buffer — large enough to handle all fragments

* Render as usual
* Disable render target writes

Y AR Advances in Real-Time Rendering Course
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Step 1 — Create Linked List

Head Pointer Buffer

Render Target

7/28/2010

-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 | -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 | -1 -1 -1 -1 -1

Node Buffer
0 1 2 3 4 5

Counter=0
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Step 1 — Create Linked List

Head Pointer Buffer

1] -2 -1 ]-2§p-1] -1

Render Target TN R EEE
"_/" -1 ]-1]-1)]-1]-1]-1
4 O T

Node Buffer

0 1 2 3 4 5

Counter=0

7/28/2010
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Step 1 — Create Linked List

Head Pointer Buffer

1] -2 -1 ]-2§p-1] -1

= 0 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
Render Target TN R EEE
’7 -1 -1 -1 -1 -1 -1
4 O T
Counter = 1
Node Buffer
0 1 2 3 4 5
7/28/2010
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Step 1 — Create Linked List

Head Pointer Buffer

1] -2 -1 ]-2§p-1] -1

TRl ENENED E
Render Target EH T EEEE E
r_/" -1 -1 -1 -1 -1 -1
4 O T
Counter = 1

Node Buffer
1 2 3 4 5

0.87

=]
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Step 1 — Create Linked List

Head Pointer Buffer

Render Target

Culled due to existing

scene geometry depth.

7/28/2010

Counter=3

-1 -1 -1 -1 -1 -1
-1 0 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
4 3 3- 1 2 -1
-1 -1 -1 -1 -1 -1
Node Buffer
0 1 2 3 4 5
0.87 0.89 0.90
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Step 1 — Create Linked List

Render Target

|

—

7/28/2010

-1 -1 -1 -1 -1 -1
- 3 4 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 1 2 -1
-1 -1 -1 -1 -1 -1
Counter =5
Nqde Buffer
0 1 2 3 W 4 5
0.87 0.89 0.90 0.65 0.65
-1 -1 -1 0 -1
|
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Step 1 — Create Linked List

1]1-1]-1]-1]-1]-1
= 5 4 1] -1 -1
1|1 p]-1)]-1]-1]-1
Render Target ERE 3R
1] L] -1 1 2 -1
1] pg]-1]-1]-1]-1

Counter=6

Node Buffér
1 ) 3 4 6

= =1 0 il

[0

0
0.87 | 0.89 ] 0.90 ] 0.65 | 0.65 | 0.71
-1
A
L

e N

J 1
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Node Buffer Counter

* Counter allocated in GPU memory (i.e. a buffer)
— Atomic updates
— Contention issues

+ DX11 Append feature

7/28/2010

Linear writes to a buffer
Implicit writes
* Append()
Explicit writes
* IncrementCounter()
« Standard memory operations
Up to 60% faster than memory counters

Advances in Real-Time Rendering Course
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Algorithm Overview N
&

0. Render opaque scene objects
1. Render transparent scene objects

2. Screen quad resolves and composites
fragment lists
— Single pass
— Pixel shader sorts associated linked list (e.g., insertion sort)
— Composite fragments in sorted order with background
—  Output final fragment

T—— Advances in Real-Time Rendering Course
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Step 2 — Render Fragments
Head Pointer Buffer

Render Target

-1 ]-1]-11-1]-1]-1
l -1]-1]-1 1 2 -1

Node Buffer
0 1 2 3 4 5 6
(0,0)->(1,1): 0.87 | 0.89 | 0.90 | 0.65 | 0.65 | 0.71
Fetch Head Pointer: -1 = il -1 0 5 3

-1 indicates no fragment to render
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Step 2 — Render Fragments
Head Pointer Buffer

S ETENENENE
Render Target El
S s 1 2 -1
FAE IER AN E
Node Buffer
1 2 34
(1,1):

Fetch Head Pointer: 5 1 ) 0 51 3

0

0.87 0.89 0.90 | 0.65 0.65 0.71
={!

) ) |

Fetch Node Data (5)

Walk the list and store in temp array

0.71 0.65 0.87
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Render Target

o I I e ) [ O 1| e
_F SIR I 1 2 | -1

Node Buffer
0 1 2 3 4 5 6
(1,1): 0.87 | 089 | 0.90 | 065 | 0.65 | 0.71
U [T I [T 1 3

Sort temp array

Blend colors and write out

0.65 0.71 0.87

Insertion sort



Step 2 — Render Fragments

Head Pointer Buffer

Render Target

Node Buffer

0 1 2 3 4 5 6

[0.87 | 089 | 0.90 | 0.65 | 0.65 | 0.71

-1 = =1 0 =1 3
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Anti-Aliasing Z/j
» Store coverage information in the linked li

* Resolve on per-sample

— Execute a shader at each sample location
— Use MSAA hardware

* Resolve per-pixel

— Execute a shader at each pixel location
— Average all sample contributions within the shader

Advances in Real-Time Rendering Course

Sub-pixel intersections

Pros:

Slightly faster than per-sample
execution

Can be done with a Compute Shader
Cons:

Destination Render Target is single
sample

Depthstencil testing is not available for

26



early rejection
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Performance Comparison

ot _____________ Jomgn |

Linked List 743 fps
Precalc 285 fps
Depth Peeling 579 fps

Bucket Depth Peeling —
Dual Depth Peeling =

Advances in Real-Time Rendering Course
Siggraph 2010, Los Angeles, CA
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338 fps
143 fps
45 fps
256 fps
94 fps

Performance scaled to ATI Radeon HD 5770
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Mecha Demo

* 602K scene triangles
— 254K transparent triangles

7/28/2010

Advances in Real-Time Rendering Course
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g_. 250 ——Alpha Blending
'g ——64 Layers
§ ———32 Layers
] ——16 Layers
o
é ——8 Layers
B ——4 Layers
——2 Layers
——0 Layers

1 21 a1 61 81 101 121

time (sec)

Advances in Real-Time Rendering Course
Siggraph 2010, Los Angeles, CA
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Worst case 370K fragments filling 40% of the frame
2ms to store the fragments
3.3ms 0->64 fps
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Scaling

250
200
&
-]
g ~———HD 5870
2 ~——HD 5770
2 ~—HD 5670
e
o ——GTX 480
o
o 20 40 60 80 100 120
Time (sec)
Advances in Real-Time Rendering Course
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Siggraph 2010, Los Angeles, CA

112 -> 60 fps -> 32fps
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Indirect lllumination with Indirect
Shadows using DirectX 11

Advances in Real-Time Rendering Course




Why Indirect Shadowing? /er

* Help perceive subtle dynamic changes
occuring in a scene.

» Adds helpful cues for depth perception.
 Indirect light contribution on scene pixels more accurate.

« Especially important for visual experience and gameplay
when environments are dimmly lit or action happens
away from direct light.

Advances in Real-Time Rendering Course
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4 Phases:

1) Create 3D grid holding blocker geometry for
indirect shadowing. (use DX71 Compute Shader)

2) Generate Reflective Shadow Maps (RSMs).
3) Indirect Light
4) Indirect Shadowing

34



PHASE #1 /Q/r/

Create 3D grid containing blocker geometry
for shadowing.

35



Create 3D grid for shadow blocker geome

—_— >

Insert

triangles of
low LOD
versions of

blocker
geometry

into cells of
3D grid

(0,0,0)

(1p.0) (1,0,1)  wemeeeeeeessseens > eol
(0,1,0)

VR R P |

: L ,B ...... » eol
(1,1,0) 111

eol = End of list (Oxffffffff)
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Generate RSMs

Adva

PHASE #2

nces in Real-Time Rendering Course
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Reflective Shadow Map /;/j

« RSM is like a standard shadow map but with
added information such as color, normal, flux,
etc.

* Pixels in RSM considered as point light sources
for 1 bounce indirect light.

« Create 1 RSM for each light source you want to
contribute indirect I‘i‘ghfg.

5 1 me Rendering Course
//28/2010 \ -
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// %
RSM ~ G-Buffer for lights /Q/
///

Position Color Normal
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Indirect Light

Adva

PHASE #3

nces in Real-Time Rendering Course
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Indirect Light /éf

At this point, assumed you have:
— Main scene G-buffer with color, position, normal
— Generated RSMs with color, position, normal

« Separate indirect light and indirect shadow
phases so you can use different buffer sizes
based on performance needs.

* In this example both phases use 1/4 size buffer.

Advances in Real-Time Rendering Course
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Full-screen quad. For each scene pix

» Transform scene pixel position : j

and normal to RSM space

Transformto
RSM space
2 3
G-Buffer pixel { }

® RSM texels/VPLs

Advances in Real-Time Rendering Course
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Indirect Light Accumulate '
294

* For each scene pixel, loop through RSM 2

kernel pixels, do standard lighting calculation between
RSM kernel pixel and scene pixel and accumulate light.

RSM texel/VPL
Pr— Pp P

D= P
|l’l. - I’pl
Np Nw
=

g-buffer pixel
_sal(N, -D)-sa(N, -(— D))
|Pe— Pf*

-Col,,, - Area,

- . .
Contributic Wy, VPL




Problem!

» Too many samples per kernel will kill
performance...but we need very large kernel to
get good visual results.

* For decent results need >=512x512 as well as
big kernel >= 80x80

7/28/2010 Advances in Real-Time Rendering Course
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Solution: .
Ve
« Don’t use the full kernel for each g
screen pixel.
 Instead, use dithered pattern of pixels which only
considers 1 out of NxN pixels each time in the
light accumulation loop.

» Dithered pattern position uses scene pixel
screen position modulo N.

7/28/2010 Advances in Real-Time Rendering Course
28/2010 o ) i
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Indirect Lighting /Z‘jr

* However, the dithered pattern used to calculate
indirect light falling on screen pixel still won’t be

smooth...

» Perform bilateral filter with up-sample to smooth
things out and go to main scene image size.
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PHASE #4 6

=

Indirect Shadowing

T— Advances in Real-Time Rendering Course
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Indirect Shadowing /ér

« Similar steps, full screen quad, transform scene
pixel to RSM, but instead of lighting
calculation...

« Accumulate the amount of *blocked” light
between RSM kernel and scene pixel.
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How do you estimate amount of

blocked light? /j

* Trace N rays from scene pixel to RSM
kernel pixels and check for blocking triangles
from the 3D grid step.

* Accumulate indirect light from *blocked* RSM kernel
pixels only!

» Apply bilateral filter and up-sample.
« SUBTRACT result from indirect light in previous step.
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Indirect Light
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After Indirect Shadowing
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Full Scene
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No Indirect Lighting

Toggle full screen
Toggle REF (F3)
Chasge device (F2)

Advances in Real-Time Rendering Course
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With Indirect Lighting

Toggle full screen
Toggle REF (F3)
Change device (F2)

P
Y= =

Intdgity of Indirect Light

Advances in Real-Time Rendering Course
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Indirect Lighting + Shadowing

Toggle full screen

Toggle REF (F3)

Change device (F2)

Advances in Real-Time Rendering Course
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Summary:

« Fairly simple implementation. All but the 3D
grid phase is probably in your pipeline today.
* Fully dynamic. No pre-generated data required.

« Offers a “playground” to experiment with ray-casting and
per-pixel data structures in DX11.

« 70-110 fps on AMD HD5970

— 12800x800 -- 9 shadow rays per pixel
— 32x32x32 grid. -- ~6000 blocker triangles per frame

Advances in Real-Time Rendering Course
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Questions? /Z/r
. http://developer.amd.com/samples/demasf%

/ATIRadeonHD5800SeriesRealTimeDemos.aspx
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