SIGGRAPH201
\‘;/4 The People . g S Q

.

Real-Time Order Independent
Transparency and Indirect lllumination
Using Direct3D 11

Jason Yang and Jay McKee
AMDZT

The future is fusion

...Continued from Last Year
Depth of Field using Summed Area Tables

7/28/2010

Today’s Overview

* Fast creation of linked lists of arbitrary size
on the GPU using D3D11

* Integration into the standard graphics pipeline
— Demonstrates compute from rasterized data
— DirectCompute features in Pixel Shader

« Examples:
— Order Independent Transparency (OIT)
— Indirect Shadowing

7/28/2010 dvances in Real-Time Rendering Course
/28/2010 N A loc CA

Building data structures from the graphics pipeline

Background

A-buffer — Carpenter ‘84
— CPU side linked list per-pixel for anti-aliasing

Fixed array per-pixel

— F-buffer, stencil routed A-buffer, Z3 buffer, and k-buffer, Slice
map, bucket depth peeling

Multi-pass
— Depth peeling methods for transparency

Recent
— Freepipe, PreCalc [DX11 SDK]

Advances in Real-Time Rendering Course

7/28/2010

Linked List Construction

« Two Buffers
— Head pointer buffer
+ addresses/offsets
* Initialized to end-of-list (EOL) value (e.g., -1)
— Node buffer
 arbitrary payload data + “next pointer”
« Each shader thread
1. Retrieve and increment global counter value
2. Atomic exchange into head pointer buffer
3. Add new entry into the node buffer at location from step 1

Y AR Advances in Real-Time Rendering Course
7/28/2010 T ey T =

Creating reverse linked list

Order Independent Transparency

Construction by Example

+ Classical problem in computer graphics

» Correct rendering of semi-transparent geometry requires sorting —
blending is an order dependent operation
+ Sometimes sorting triangles is enough but not always
: Multiple meshes interacting (many draw calls)
— Impossible to sort: Intersecting triangles (must sort fragments)

Advances in Real-Time Rendering Course

Siggraph 2010, Los Angeles, CA

7/28/2010

Order Independent Transparency

with Per-Pixel Linked Lists /é)
« Computes correct transparency

Good performance

Works with depth and stencil testing

Works with and without MSAA

Example of programmable blend

Algorithm Overview ~C

0. Render opaque scene objects
Render transparent scene objects

2. Screen quad resolves and composites
fragment lists

—_—

T— Advances in Real-Time Rendering Course
7/28/2010 R e

Step 0 — Render Opaque

* Render all opague geometry normally

Render Target
4
™
7/28/2010 eyt S

10

Algorithm Overview
Y4

0. Render opaque scene objects #

1. Render transparent scene objects
— All fragments are stored using per-pixel linked lists
— Store fragment’s: color, alpha, & depth

2. Screen quad resolves and composites
fragment lists

Y AR Advances in Real-Time Rendering Course
7/28/2010 sl an e

11

Setup y Q{/

« Two buffers ’
— Screen sized head pointer buffer
— Node buffer — large enough to handle all fragments

* Render as usual
* Disable render target writes

Y AR Advances in Real-Time Rendering Course
7/28/2010 pliekeetininiimtisnn i

12

Step 1 — Create Linked List

Head Pointer Buffer

Render Target

7/28/2010

-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 | -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 | -1 -1 -1 -1 -1

Node Buffer
0 1 2 3 4 5

Counter=0

13

Step 1 — Create Linked List

Head Pointer Buffer

1] -2 -1]-2§p-1] -1

Render Target TN R EEE
"_/" -1]-1]-1)]-1]-1]-1
4 O T

Node Buffer

0 1 2 3 4 5

Counter=0

7/28/2010

14

Step 1 — Create Linked List

Head Pointer Buffer

1] -2 -1]-2§p-1] -1

= 0 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
Render Target TN R EEE
’7 -1 -1 -1 -1 -1 -1
4 O T
Counter = 1
Node Buffer
0 1 2 3 4 5
7/28/2010

15

Step 1 — Create Linked List

Head Pointer Buffer

1] -2 -1]-2§p-1] -1

TRl ENENED E
Render Target EH T EEEE E
r_/" -1 -1 -1 -1 -1 -1
4 O T
Counter = 1

Node Buffer
1 2 3 4 5

0.87

=]

7/28/2010

16

Step 1 — Create Linked List

Head Pointer Buffer

Render Target

Culled due to existing

scene geometry depth.

7/28/2010

Counter=3

-1 -1 -1 -1 -1 -1
-1 0 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
4 3 3- 1 2 -1
-1 -1 -1 -1 -1 -1
Node Buffer
0 1 2 3 4 5
0.87 0.89 0.90

17

Step 1 — Create Linked List

Render Target

|

—

7/28/2010

-1 -1 -1 -1 -1 -1
- 3 4 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 1 2 -1
-1 -1 -1 -1 -1 -1
Counter =5
Nqde Buffer
0 1 2 3 W 4 5
0.87 0.89 0.90 0.65 0.65
-1 -1 -1 0 -1
|

18

Step 1 — Create Linked List

1]1-1]-1]-1]-1]-1
= 5 4 1] -1 -1
1|1 p]-1)]-1]-1]-1
Render Target ERE 3R
1] L] -1 1 2 -1
1] pg]-1]-1]-1]-1

Counter=6

Node Buffér
1) 3 4 6

= =1 0 il

[0

0
0.87 | 0.89] 0.90] 0.65 | 0.65 | 0.71
-1
A
L

e N

J 1

7/28/2010

Node Buffer Counter

* Counter allocated in GPU memory (i.e. a buffer)
— Atomic updates
— Contention issues

+ DX11 Append feature

7/28/2010

Linear writes to a buffer
Implicit writes
* Append()
Explicit writes
* IncrementCounter()
« Standard memory operations
Up to 60% faster than memory counters

Advances in Real-Time Rendering Course

20

Algorithm Overview N
&

0. Render opaque scene objects
1. Render transparent scene objects

2. Screen quad resolves and composites
fragment lists
— Single pass
— Pixel shader sorts associated linked list (e.g., insertion sort)
— Composite fragments in sorted order with background
— Output final fragment

T—— Advances in Real-Time Rendering Course
7/28/2010 b) 1 e A o

21

Step 2 — Render Fragments
Head Pointer Buffer

Render Target

-1]-1]-11-1]-1]-1
l -1]-1]-1 1 2 -1

Node Buffer
0 1 2 3 4 5 6
(0,0)->(1,1): 0.87 | 0.89 | 0.90 | 0.65 | 0.65 | 0.71
Fetch Head Pointer: -1 = il -1 0 5 3

-1 indicates no fragment to render

7/28/2010

Step 2 — Render Fragments
Head Pointer Buffer

S ETENENENE
Render Target El
S s 1 2 -1
FAE IER AN E
Node Buffer
1 2 34
(1,1):

Fetch Head Pointer: 5 1) 0 51 3

0

0.87 0.89 0.90 | 0.65 0.65 0.71
={!

)) |

Fetch Node Data (5)

Walk the list and store in temp array

0.71 0.65 0.87

23

Render Target

o I I e) [O 1| e
_F SIR I 1 2 | -1

Node Buffer
0 1 2 3 4 5 6
(1,1): 0.87 | 089 | 0.90 | 065 | 0.65 | 0.71
U [T I [T 1 3

Sort temp array

Blend colors and write out

0.65 0.71 0.87

Insertion sort

Step 2 — Render Fragments

Head Pointer Buffer

Render Target

Node Buffer

0 1 2 3 4 5 6

[0.87 | 089 | 0.90 | 0.65 | 0.65 | 0.71

-1 = =1 0 =1 3

7/28/2010

Anti-Aliasing Z/j
» Store coverage information in the linked li

* Resolve on per-sample

— Execute a shader at each sample location
— Use MSAA hardware

* Resolve per-pixel

— Execute a shader at each pixel location
— Average all sample contributions within the shader

Advances in Real-Time Rendering Course

Sub-pixel intersections

Pros:

Slightly faster than per-sample
execution

Can be done with a Compute Shader
Cons:

Destination Render Target is single
sample

Depthstencil testing is not available for

26

early rejection

26

Performance Comparison

ot _____________ Jomgn |

Linked List 743 fps
Precalc 285 fps
Depth Peeling 579 fps

Bucket Depth Peeling —
Dual Depth Peeling =

Advances in Real-Time Rendering Course
Siggraph 2010, Los Angeles, CA

7/28/2010

338 fps
143 fps
45 fps
256 fps
94 fps

Performance scaled to ATI Radeon HD 5770

28

Mecha Demo

* 602K scene triangles
— 254K transparent triangles

7/28/2010

Advances in Real-Time Rendering Course

29

g_. 250 ——Alpha Blending
'g ——64 Layers
§ ———32 Layers
] ——16 Layers
o
é ——8 Layers
B ——4 Layers
——2 Layers
——0 Layers

1 21 a1 61 81 101 121

time (sec)

Advances in Real-Time Rendering Course
Siggraph 2010, Los Angeles, CA

7/28/2010

Worst case 370K fragments filling 40% of the frame
2ms to store the fragments
3.3ms 0->64 fps

30

Scaling

250
200
&
-]
g ~———HD 5870
2 ~——HD 5770
2 ~—HD 5670
e
o ——GTX 480
o
o 20 40 60 80 100 120
Time (sec)
Advances in Real-Time Rendering Course
7/28/2010

Siggraph 2010, Los Angeles, CA

112 -> 60 fps -> 32fps

31

Indirect lllumination with Indirect
Shadows using DirectX 11

Advances in Real-Time Rendering Course

Why Indirect Shadowing? /er

* Help perceive subtle dynamic changes
occuring in a scene.

» Adds helpful cues for depth perception.
 Indirect light contribution on scene pixels more accurate.

« Especially important for visual experience and gameplay
when environments are dimmly lit or action happens
away from direct light.

Advances in Real-Time Rendering Course

33

4 Phases:

1) Create 3D grid holding blocker geometry for
indirect shadowing. (use DX71 Compute Shader)

2) Generate Reflective Shadow Maps (RSMs).
3) Indirect Light
4) Indirect Shadowing

34

PHASE #1 /Q/r/

Create 3D grid containing blocker geometry
for shadowing.

35

Create 3D grid for shadow blocker geome

—_— >

Insert

triangles of
low LOD
versions of

blocker
geometry

into cells of
3D grid

(0,0,0)

(1p.0) (1,0,1) wemeeeeeeessseens > eol
(0,1,0)

VR R P |

: L ,B » eol
(1,1,0) 111

eol = End of list (Oxffffffff)

36

7/28/2010

Generate RSMs

Adva

PHASE #2

nces in Real-Time Rendering Course
e O

O

37

——

Reflective Shadow Map /;/j

« RSM is like a standard shadow map but with
added information such as color, normal, flux,
etc.

* Pixels in RSM considered as point light sources
for 1 bounce indirect light.

« Create 1 RSM for each light source you want to
contribute indirect I‘i‘ghfg.

5 1 me Rendering Course
//28/2010 \ -

38

// %
RSM ~ G-Buffer for lights /Q/
///

Position Color Normal

39

7/28/2010

Indirect Light

Adva

PHASE #3

nces in Real-Time Rendering Course
e O

&

40

Indirect Light /éf

At this point, assumed you have:
— Main scene G-buffer with color, position, normal
— Generated RSMs with color, position, normal

« Separate indirect light and indirect shadow
phases so you can use different buffer sizes
based on performance needs.

* In this example both phases use 1/4 size buffer.

Advances in Real-Time Rendering Course

41

Full-screen quad. For each scene pix

» Transform scene pixel position : j

and normal to RSM space

Transformto
RSM space
2 3
G-Buffer pixel { }

® RSM texels/VPLs

Advances in Real-Time Rendering Course

42

Indirect Light Accumulate '
294

* For each scene pixel, loop through RSM 2

kernel pixels, do standard lighting calculation between
RSM kernel pixel and scene pixel and accumulate light.

RSM texel/VPL
Pr— Pp P

D= P
|l’l. - I’pl
Np Nw
=

g-buffer pixel
_sal(N, -D)-sa(N, -(— D))
|Pe— Pf*

-Col,,, - Area,

- . .
Contributic Wy, VPL

Problem!

» Too many samples per kernel will kill
performance...but we need very large kernel to
get good visual results.

* For decent results need >=512x512 as well as
big kernel >= 80x80

7/28/2010 Advances in Real-Time Rendering Course
8/2010 e) -

44

Solution: .
Ve
« Don’t use the full kernel for each g
screen pixel.
 Instead, use dithered pattern of pixels which only
considers 1 out of NxN pixels each time in the
light accumulation loop.

» Dithered pattern position uses scene pixel
screen position modulo N.

7/28/2010 Advances in Real-Time Rendering Course
28/2010 o) i

45

Indirect Lighting /Z‘jr

* However, the dithered pattern used to calculate
indirect light falling on screen pixel still won’t be

smooth...

» Perform bilateral filter with up-sample to smooth
things out and go to main scene image size.

46

PHASE #4 6

=

Indirect Shadowing

T— Advances in Real-Time Rendering Course
7/28/2010 A

Indirect Shadowing /ér

« Similar steps, full screen quad, transform scene
pixel to RSM, but instead of lighting
calculation...

« Accumulate the amount of *blocked” light
between RSM kernel and scene pixel.

48

How do you estimate amount of

blocked light? /j

* Trace N rays from scene pixel to RSM
kernel pixels and check for blocking triangles
from the 3D grid step.

* Accumulate indirect light from *blocked* RSM kernel
pixels only!

» Apply bilateral filter and up-sample.
« SUBTRACT result from indirect light in previous step.

49

Indirect Light

50

After Indirect Shadowing

51

Full Scene

52

No Indirect Lighting

Toggle full screen
Toggle REF (F3)
Chasge device (F2)

Advances in Real-Time Rendering Course

53

With Indirect Lighting

Toggle full screen
Toggle REF (F3)
Change device (F2)

P
Y= =

Intdgity of Indirect Light

Advances in Real-Time Rendering Course

54

Indirect Lighting + Shadowing

Toggle full screen

Toggle REF (F3)

Change device (F2)

Advances in Real-Time Rendering Course

55

Summary:

« Fairly simple implementation. All but the 3D
grid phase is probably in your pipeline today.
* Fully dynamic. No pre-generated data required.

« Offers a “playground” to experiment with ray-casting and
per-pixel data structures in DX11.

« 70-110 fps on AMD HD5970

— 12800x800 -- 9 shadow rays per pixel
— 32x32x32 grid. -- ~6000 blocker triangles per frame

Advances in Real-Time Rendering Course

57

Thanks

» Holger Griin, Nicolas Thibieroz, :
Justin Hensley, Abe Wiley, Dan Roeger, David
Hoff, and Tom Frisinger — AMD

» Chris Oat — Rockstar New England
» Jakub Klarowicz — Techland

58

References ["

* Yang J., Hensley J., Griin H., Thibieroz N.: Real-Time Con
Linked List Construction on the GPU. In Rendering Techniques
2010: Eurographics Symposium on Rendering (2010), vol. 29,
Eurographics.

* Grin H., Thibieroz N.: OIT and Indirect lllumination using DX11
Linked Lists. In Proceedings of Game Developers Conference 2010
(Mar. 2010).
http://developer.amd.com/gpu_assets/OIT%20and%20Indirect%20lll
umination%20using%20DX11%20Linked%20Lists_forweb.ppsx

Advances in Real-Time Rendering Course

59

Questions? /Z/r
. http://developer.amd.com/samples/demasf%

/ATIRadeonHD5800SeriesRealTimeDemos.aspx

60

