
Advances in Real-‐Time Rendering in Games

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Voxels in LittleBigPlanet 2
Alex Evans & Anton Kirczenow

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Boutique engine coding
 LBP, like LBP2, uses a custom engine, tailored to the

game’s look and design.
 What’s the biggest constraint?

– GPU Time? Sorta.
– CPU (PPU) Time? Ish.
– Programmer Time! Definitely.

–LBP1 - 1.5 graphics coders x 36 months
–LBP2 - 1.1 graphics programmers x 18 months

Wednesday, 10 August 11
about 10% is R&D you throw away; 10% is R&D you use; 30% is implementation;
50% is bug fixing, bullet proofing and optimising (time & memory)

time was the greatest constraint. the rule was: if it was good enough, move on to
the next problem. in many cases in this talk you'll probably perceive branch
points in possible implementations; one take away from this talk is how often we
got away with 'good enough'.

Advances in Real-‐Time Rendering in Games

Coder time as constraint

 Typically your time breaks down as:
– 15% R&D you throw away
– 5% R&D you use
– 30% implementation time
– 50% bug fixing, optimizing, ‘bullet proofing’

Wednesday, 10 August 11
about 10% is R&D you throw away; 10% is R&D you use; 30% is implementation;
50% is bug fixing, bullet proofing and optimising (time & memory)

time was the greatest constraint. the rule was: if it was good enough, move on to
the next problem. in many cases in this talk you'll probably perceive branch
points in possible implementations; one take away from this talk is how often we
got away with 'good enough'.

Advances in Real-‐Time Rendering in Games

LBP Engine requirements
 many local lights please
 simple code
 predictable cost:

 µσ much better than µσ
Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Lighting a UGC Game
 Goal: fast evaluation of lighting from multiple moving

light sources in a dynamic scene

– Constraint 1: Scene has low depth complexity - ‘2.5D’

– Constraint 2: Has to run at consistent speed with
modest memory usage, and no pre-computation

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

So we tried a few things...
 LBP0 aka SIGGRAPH 2006

– Irradiance volumes
–sliced in screen-space

 LBP1 aka SIGGRAPH 2009
– Ilight pre-pass renderer

–with 2 layers of depth for transparency
 LBP2 aka SIGGRAPH 2011

 dynamically voxelized scene
 world space irradiance volume

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Attempt 0: View aligned Irradiance Volumes

• In a dynamic scene, it’s not possible to precompute
the irradiance volume
– So we are going to recompute it on the fly using the GPU, at

low resolution, based on a potentially large number of light
emitters

• Since we’re recomputing it every frame,
– It makes sense to compute it in screen space.
– In this example, the target constraint was for a ‘2.5D’ thin world,

so a small number (16) of slices are used, parallel to the
screen. They are evenly spaced in post projective space, ie
evenly spaced in ‘w’. (1/z)

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

The scene lit by a single point source

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Irradiance volume visualisation

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Using ∇ to approximate directional dependence

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Using ∇ to approximate directional dependence

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Using ∇ to approximate directional dependence

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Results (no sun)

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Results (with sun)

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Why that did not work

• Light leaking (no occlusion)
• Low slicing rate + high perspective

world space:

eye front

screen space:

Wednesday, 10 August 11
LBP0: Irradiance volumes [siggraph 2006]
greatest single problem: low rate of z slicing in post-perspective space ->
eccentricity of ellipsoids high enough that the slices shear apart.
also, light leaking; lack of occlusion.

Advances in Real-‐Time Rendering in Games

Why that did not work

• Light leaking (no occlusion)
• Low slicing rate + high perspective

world space:

eye front

screen space:

Wednesday, 10 August 11
LBP0: Irradiance volumes [siggraph 2006]
greatest single problem: low rate of z slicing in post-perspective space ->
eccentricity of ellipsoids high enough that the slices shear apart.
also, light leaking; lack of occlusion.

Advances in Real-‐Time Rendering in Games

Attempt 1: aka how we actually did it in LBP1

• Light pre-pass renderer
– lighting run at 2xMSAA

sample rate
– allows for 2 layers of

transparency!!!!
– all lighting is simple deferred,

unshadowed.

Wednesday, 10 August 11
LBP1: Light pre-pass rendering [siggraph 2009]

greatest single problem: 2 < many

Advances in Real-‐Time Rendering in Games

Lay down a Z/N pre-pass at 2X MSAA

Light pre-pass renderer

Wednesday, 10 August 11
The solution we shipped with amounts to (I discovered yesterday researching the other talks at this
course!) Wolfgang Engel’s light-prepass algorithm ,or a variant of it. So we’re in good company :) and I
won’t cover that aspect of it any more today as I’m guessing Wolfgang will have covered it and many
extensions already.
For LBP the technique evolved less from a ‘prepass’ mentality, and more through my self imposed
allergy to MRTs, combined with the observation that every single one of the materials generated by the
artists to that date had the same specular power. (!) (which happened to be the default i’d set - 22.
luckily I’d spent some time choosing that value - but it’s worth noting: whenever you choose a default
for your artists, do so carefully, and visually. there is never any excuse for hiding behind the old
excuse of ‘oh its just coder art some artist can make it look good later’ if you’re a graphics coder)
I figured that I might as well light the whole scene with one ‘grey plastic’ shader, whose material
properties were constant and thus didn’t require any screen space material buffers, and then ‘paint the
color’ over the scene in a 2nd geometry pass. The specular lobe was broken out into the alpha channel
so that it could be modulated separately from the diffuse component.
This had the added benefit that it forced me to revisit both ‘spite lights’, but also MSAA and
transparency, both of which were now ‘weaker’ (aka not working) than they had been in the previous
forward renderer.

Advances in Real-‐Time Rendering in Games

then re-render
scene
‘forwards’,
sampling ‘L’ into
BRDF

Light pre-pass renderer

Wednesday, 10 August 11
a brief note on performance: for typical sunlit scenes, the new 2-pass system
was relatively well suited to the peculiarities of the RSX GPU: the first pass
sampled only normal maps, and acted almost like a fast z prepass (although I
couldn’t use the double speed rendering mode, it’s still a relatively small amount
of the total frame time, at under 3ms). This helped reduce overdraw for the 2nd
pass with its extremely bandwidth-hungry multi-layered textures, and reduced
thrashing of the texture cache: the normal maps (which were themselves often
layered) were ‘out the way’, balanced between the two passes. So the
performance penalty of rendering the scene geometry twice was largely offset.

Advances in Real-‐Time Rendering in Games

2 layer transparency

deferred shading with alpha. what?

Wednesday, 10 August 11
the new deferred renderer was fine, but immediately threw into question how to light transparent
objects. LBP very often has semi transparent objects placed over the scene, most obviously in ‘create
mode’ where a 50% alphad ‘stamp’ object can be positioned in the scene before being ‘materialised’ by
hitting X.
So it was extremely important to be able to light scenes including transparent objects. I was unwilling
to introduce a second code path for those objects.
In addition, transparent rendering wasn’t the only problem: any technique that reads back the z buffer
has issues with transparency.
as I mentioned at the outset, the visual style of LBP was ‘miniature world’ and heavy DOF & motion blur
were the most important techniques to achieve that ‘real world mini’ look
these techniques rely on post-processing of the rendered scene, typically taking into account the Z
buffer value at each pixel. Thus, they break down on scenes with transparency.
In the switch to a deferred shader, the main surface renderer also now fell into this ‘transparency is
hard’ category.
LBP uses 2X MSAA, and it occurred to me that it would be nice to trade spatial antialiasing for the
majority of the screen, with layered transparency where it was needed. In other words, use the memory
normally reserved for related color samples in a pixel, to store 2 layers of both Z and N, but only where
it was needed. By running the deferred lighting passes at double horizontal resolution, and by making
the post-processing effects aware of this ‘dual layer transparency’, it was possible to create correct
lighting, DOF and motion blur for the very-common-in-LBP case of a single semi-transparent object in
front of solid objects.

Advances in Real-‐Time Rendering in Games

but: 2 is not a big number
leads to odd effects when you get more than 2
layers:

users actively are exploiting this to great effect!

Wednesday, 10 August 11
Obviously, this 2 layer system wasn’t without its costs.
It led to relatively ‘fragile’ shaders which carefully offset their input UV coordinates by half a pixel here
and there - not intuitive looking code, and a hassle when supporting multiple resolutions or off-screen
rendering.
worst of all, you run out of ‘2’ very quickly! glass-behind-glass disappears. Amazingly, the
community now uses this (along with another bug in the handling of fog!) to striking effect: quite a few
levels place a thin layer of glass across the front of the entire level. now, all objects made of glass in
the main play area disappear, since the alpha layer is entirely used up by the transparent foreground
layer. Now, these entreprising creators can create ‘magical’ levels where the mechanism is hidden, or
objects appear to float. In the hands of the right users, no mis-feature is ever all bad....
Worse, it slowed down some shaders - especially the final MSAA resolve shader, and the DOF shaders -
because they had to take great care to treat the two samples separately.
Since LBP was released, Matt Swoboda and the Phyre Engine team have done some very interesting
work on using the SPU to do deferred shading. In particular, their optimization of categorizing tiles of
framebuffer according to need - eg transparency, no transparency- could be used to both speed up
the easy cases, and further improve the quality/features of the ‘deferred transparency’ (perhaps with
more layers). A particularly interesting variant is to decouple the resolution of the lighting pre-passes,
from the final colour passes. In that scenario, the final color passes would need to ‘scan’ the lower
resolution lighting buffers, for appropriate samples.

Advances in Real-‐Time Rendering in Games

btw: god rays implementation
– completely 2d screenspace effect
– each light volume is rendered to an off-

screen surface, one channel per light (in
batches of 4)
• pixel shader integrates light scattering along eye

ray to first solid object (z buffer distance)
• 3 pass ‘smear’ shader then smears dark regions

with MIN blending
• each pass doubles distance of smear

Wednesday, 10 August 11
The smear shader is a simple 5 tap linear 2d ‘smear’: the screenspace pixel
position is scaled towards the source of the light, and the samples merged
together.
Rather than summing the samples, which leads to a soft edge on both sides of
the smeared image, the sampled values are biased by the smear distance, and
then min-blended.

Advances in Real-‐Time Rendering in Games

Attempt 2: aka LBP2 ‘back to forward’

• wanted transparent
surfaces, and particles.

• ...but now, no MSAA
(MLAA instead)

Wednesday, 10 August 11
LBP2: want alpha BADLY. and particles. and MLAA -> no msaa sample rate.back
to irradiance voumes!
- but now in world space. world is flat-ish
 - quantize to stop crawling
 - clamp maximum size
 - still sucks for oblique views

Advances in Real-‐Time Rendering in Games

Wednesday, 10 August 11
- first, voxelize the scene. render to 360p x 4MRTs -> 16 slices in one pass.
we didn't want accurate binary voxelisation, we wanted coverage per voxel. so
alpha-blend z-ranges
pixel shader computes front (from z) and back (by reflection or constant-per
object) and outputs to MRT
 this is an example of good enough: could have:
 rendered back faces & subtracted
 precomputed backfaces (limited rotation?)
 raycast?!

Advances in Real-‐Time Rendering in Games

First, you voxelize your scene
Wednesday, 10 August 11
- first, voxelize the scene. render to 360p x 4MRTs -> 16 slices in one pass.
we didn't want accurate binary voxelisation, we wanted coverage per voxel. so
alpha-blend z-ranges
pixel shader computes front (from z) and back (by reflection or constant-per
object) and outputs to MRT
 this is an example of good enough: could have:
 rendered back faces & subtracted
 precomputed backfaces (limited rotation?)
 raycast?!

Advances in Real-‐Time Rendering in Games

First, you voxelize your scene
Wednesday, 10 August 11
- first, voxelize the scene. render to 360p x 4MRTs -> 16 slices in one pass.
we didn't want accurate binary voxelisation, we wanted coverage per voxel. so
alpha-blend z-ranges
pixel shader computes front (from z) and back (by reflection or constant-per
object) and outputs to MRT
 this is an example of good enough: could have:
 rendered back faces & subtracted
 precomputed backfaces (limited rotation?)
 raycast?!

Advances in Real-‐Time Rendering in Games

First, you voxelize your scene
Wednesday, 10 August 11
- first, voxelize the scene. render to 360p x 4MRTs -> 16 slices in one pass.
we didn't want accurate binary voxelisation, we wanted coverage per voxel. so
alpha-blend z-ranges
pixel shader computes front (from z) and back (by reflection or constant-per
object) and outputs to MRT
 this is an example of good enough: could have:
 rendered back faces & subtracted
 precomputed backfaces (limited rotation?)
 raycast?!

Advances in Real-‐Time Rendering in Games

(Image from S. THIEDEMANN, N. HENRICH, T. GROSCH, S. MÜLLER 2011)

We could bit-slice it...
but we’re more intersted in coverage
so pixel shader should compute and α-
blend ‘z coverage’

We just used z buffer value and fixed
thickness!
‘good enough’

could have precomputed, or raycast, or
mirrored, or...
...but fixed was fine for us. MOVING ON!

How we Voxelized the Scene

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

first we write to 4 MRTs, 16 slices packed:
color_out0 = saturate(zthick-‐abs(float4(0,1,2,3)-‐zcen)) * alpha;

 color_out1 = saturate(zthick-‐abs(float4(4,5,6,7)-‐zcen)) * alpha;
 color_out2 = saturate(zthick-‐abs(float4(8,9,10,11)-‐zcen)) * alpha;
 color_out3 = saturate(zthick-‐abs(float4(12,13,14,15)-‐zcen)) * alpha;

Then unswizzle, blur and downsample to a MIP
pyramid
360p x 4 RGBA MRTS
360p x 16 greyscale slices
180p x 16 slices
90p x 8 slices
45p x 4 slices

how we voxelized the scene

Wednesday, 10 August 11
next we unpack/unswizzle the rgba channels into a volume tex compute an image
pyramid aka mipchain
 (first one doesnt reduce z so you get 180p x 16, 90p x 8, 45p x 4)

Advances in Real-‐Time Rendering in Games

next we splat lights into a 180p x 8 volume
actually 2x FP16 MRTs

one is ‘SH0’ colour intensity
other is ‘SH1’ light direction (monochrome)

Wednesday, 10 August 11
now, splat lights into irradiance volume in same space (fp16, 180p - really blurry
so thats ok)
- upgraded from just colour: stored somthing like 1st order SH in monochrome,
with 0th order in RGB
- custom falloff textures - something like 1-d
- SH0 multiplied by N.SH1 - gives sharper falloff (1-d)^2
- was planning to then 'smear' this (propegate light) in multiple steps. ie scatter
however.. while prototyping, we discovered that you could just sample the voxel
rep 16 times and it still ran plenty fast enough. YAY! SHADOWS!

Advances in Real-‐Time Rendering in Games

forward renderer now just samples the light volumes
once per pixel.
very predictable cost, very fast.

Wednesday, 10 August 11
FOWARD rendering
- now forward rendering is trivial: just sample the irradiance volumes and do
SH0.rgb * dot(N, SH1)
- you can even do specular!
- it's fast enough to do for particles too
- some examples
- you now have a fast samplable representation of the flow of light

Advances in Real-‐Time Rendering in Games

custom falloff baked in at ‘splat time’
something like (1-d)
at (forward) shade time, we do SH0.rgb * dot(SH1.xyzw, N.xyzw)
so you get falloff of (1-d)^2

Wednesday, 10 August 11
- custom falloff textures - something like 1-d
- SH0 multiplied by N.SH1 - gives sharper falloff (1-d)^2

Advances in Real-‐Time Rendering in Games

We were planning to ‘smear’/propagate the light.
However, in a quick hack we just sampled the voxel texture
24 times towards the light. It was fast!
Real raycast shadows FTW!

Wednesday, 10 August 11
- was planning to then 'smear' this (propagate light) in multiple steps. ie scatter
however.. while prototyping, we discovered that you could just sample the voxel
rep 16 times and it still ran plenty fast enough. YAY! SHADOWS!

Advances in Real-‐Time Rendering in Games

Text

 float3 ff=aolightpos -‐ aopos;
 float occ = 0;

 float l=length(ff);
 const float max_length = .875;
 const int samples = 24;
 float lscale = min(max_length, max_length / l);
 ff*=lscale;
 for (int i=samples; i>1; i-‐-‐)
 {
 float samp = tex3D(tex,aopos + ff.xyz*i/samples);
 occ+=saturate(samp-‐last);
 }
 env*=saturate(1-‐occ*.75);

Wednesday, 10 August 11

sun shadow
sky shadow

WORLD SPACE
AO & skylight!

Wednesday, 10 August 11
AO
you can also sample AO in world space - in your forward renderer, you sample
the pyramid at increasing distance from the surface. similar to cone tracing in
[gigavoxels]

WORLD SPACE
AO & skylight!

AO

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

video of voxels for skylight

Wednesday, 10 August 11

Sketch of what’s going on

Wednesday, 10 August 11
sorry for stealing from very old siggraph 2006 slides here. but it represents the
idea.
given that you have an image pyramid of your world’s voxelization ‘coverage’, you
can make use of these mips by repeatedly sampling at a small distance (say, 1
voxel) away from the surface, and summing at all levels of the heirachy. instant
AO!

Sketch of what’s going onSketch of what’s going on

Wednesday, 10 August 11

Sketch of what’s going onSketch of what’s going on

Wednesday, 10 August 11

Sketch of what’s going onSketch of what’s going on

Wednesday, 10 August 11

Sketch of what’s going onSketch of what’s going on

Wednesday, 10 August 11

Sketch of what’s going on

Wednesday, 10 August 11

Sketch of what’s going on

Wednesday, 10 August 11
...and by bending the normal towards the light, you get a skylighting effect, as
objects ‘under’ others tend to feel the effects.

Sketch of what’s going on

Wednesday, 10 August 11

Sketch of what’s going on

Wednesday, 10 August 11

float DynamicAO(float3 vec2eye, half4 iNormal)
{...
 half4 aoNormal = iNormal;
 aoNormal.y+=0.75; // push towards the sky
 worldPos.xyz+=aoNormal.xyz;
 aoNormal.w=1;
 float ao=tex3Dlod(tex,worldPos).z;
 iNormal.xyz*=2;
 worldPos.xyz+=aoNormal.xyz;
 ao+=tex3Dlod(tex_lo,worldPos).z;
 iNormal.xyz*=2;
 worldPos.xyzw+=aoNormal.xyzw;
 ao+=tex3Dlod(tex_lo,worldPos).z;
 iNormal.xyz*=2;
 worldPos.xyzw+=aoNormal.xyzw;
 ao+=tex3Dlod(tex_lo,worldPos).z;
 return 1-‐ao*minaabb.w;
} Advances in Real-‐Time Rendering in Games

sneaky MIP-level picking in w

Code for world space AO/skylight

Wednesday, 10 August 11
AO
you can also sample AO in world space - in your forward renderer, you sample
the pyramid at increasing distance from the surface. similar to cone tracing in
[gigavoxels]

Advances in Real-‐Time Rendering in Games

Single scattering

We just brute force raymarch through the SH0 light volume from eye to z buffer
(at 160p, with 2x2 stratified jitter on the sample points)

probably the most defining thing of the
LBP2 atmosphere/look

Wednesday, 10 August 11
SINGLE SCATTERING
This actually is the most defining feature of lbp2's atmosphere.
at the end of the frame, we ray-march in screenspace rays from eye to z buffer,
through SH0 volume.
do this at 160p and we jitter the rays on a 2x2 stratified grid, and then blur it out
with a separable gaussian blur (also used for bloom). final comp controlled by
user with 'foginess' slider.

Advances in Real-‐Time Rendering in Games

then we comp it with our bloom buffer, and separably blur away the
noise

Single scattering

Wednesday, 10 August 11
SINGLE SCATTERING
This actually is the most defining feature of lbp2's atmosphere.
at the end of the frame, we ray-march in screenspace rays from eye to z buffer,
through SH0 volume.
do this at 160p and we jitter the rays on a 2x2 stratified grid, and then blur it out
with a separable gaussian blur (also used for bloom). final comp controlled by
user with 'foginess' slider.

Advances in Real-‐Time Rendering in Games

This is awesome!

Wednesday, 10 August 11
THIS IS AWESOME!
but

downsides:
* super lo-res if the scene gets large
* not as fast per-light as it's gather (go back to scatter/smear?)
* low order SH-type effect gets confused with 'duelling lights' - especially for
specular: red light on left, blue light on right, you get one pink specular hilight in
the middle...

Advances in Real-‐Time Rendering in Games

It has obvious limitations:

• super lo-res if the scene gets large - aliasing
at oblique angles

• not as fast per-light as we’d like
– beacuse of shadow raymarch gather

• (could go back to scatter/smear?)

Wednesday, 10 August 11
THIS IS AWESOME!
but

downsides:
* super lo-res if the scene gets large
* not as fast per-light as it's gather (go back to scatter/smear?)
* low order SH-type effect gets confused with 'duelling lights' - especially for
specular: red light on left, blue light on right, you get one pink specular hilight in
the middle...

Advances in Real-‐Time Rendering in Games

It has obvious limitations:

• low order SH-type effect gets confused with
'duelling lights'
– especially for specular
– red light on left, blue light on right, you get one pink

specular hilight in the middle...

Wednesday, 10 August 11
THIS IS AWESOME!
but

downsides:
* super lo-res if the scene gets large
* not as fast per-light as it's gather (go back to scatter/smear?)
* low order SH-type effect gets confused with 'duelling lights' - especially for
specular: red light on left, blue light on right, you get one pink specular hilight in
the middle...

Advances in Real-‐Time Rendering in Games

But also: obvious extensions!

• Things we didn’t even bother trying due to
time constraints:

• adaptive resolution - quadtree?
• or, cascade of resolutions centered on

camera?
• light propagation instead of raymarching?

Wednesday, 10 August 11
extensions we didn't even try but are obvious:
* adaptive resolution - quadtree?
* or, cascade of resolutions centered at camera?
* light propegation instead of shadow gather

Advances in Real-‐Time Rendering in Games

Particles & Fluids + Voxels = win

 The main graphics programmer
for LBP2 was Anton Kirczenow.
– I’ll now pretend to be him :)

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Fluids in LBP2
 Fluids in LBP are basically based on a FLIP

integrator as described in R. Bridson’s book.
 Coded as 47 different SPU jobs!
 Essentially, 100s of kernels run sparsely

over the fluid particles and/or grids
 Very SPU friendly - lightly vectorized in a

few places, unrolled a few loops
• but didn’t have to downcode to ASM!
• we end up GPU fillrate bound anyway

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Aside on implementing SPU kernels
 a little bit of PERL and C++ preproc goes a long way!
 Each SPU job ‘tagged up’ in a .h file

– included in multiple places:
– PPU side, collect main memory pointers, sizes and access

patterns, decide how many jobs to split into, put jobs into a
job chain

– SPU side, unpack DMA inputs into arguments to the kernel
function

– SPU side, generate the kernel code and call it
– SPU side, make DMA outputs go

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Aside on implementing SPU kernels

– #ifdef WANT_CODE

void
#endif // WANT_CODE
#ifdef WANT_NAME // _FUNCTION_NAME
FlipPremultPoisson
(
#endif // _FUNCTION_ARGS
 STREAM_WRITE(float, poisson1, poisson1_size)
 STREAM_WRITE(float, poisson2, poisson2_size)
 STREAM_WRITE(float, poisson3, poisson3_size)
 STREAM_READ(float, preconditioner, preconditioner_size)
 STREAM_READ(v4, poisson, poisson_size)

 STREAM_END
)

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Aside on implementing SPU kernels
#ifdef WANT_CODE

)
{
 u32 np = stream_end_decl;
 for (u32 i=0; i<np; i++)
 {
 float precond = preconditioner[i];
 v4 pois = poisson[i];

 poisson1[i] = pois.getY()*precond;
 poisson2[i] = pois.getZ()*precond;
 poisson3[i] = pois.getW()*precond;
 }
}
#endif // WANT_CODE

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

a list of all the kernels!
flip_accumulate.h

flip_add_gradient.h
flip_add_gravity.h
flip_alive.h
flip_apply_boundary_markers.h
flip_apply_boundary_velocity.h
flip_apply_poisson.h
flip_apply_preconditioner1.h
flip_apply_preconditioner2.h
flip_average.h
flip_barify.h
flip_center.h
flip_check.h
flip_compress_markers.h
flip_copy.h
flip_dot.h
flip_find_divergence.h
flip_form_poisson.h
flip_form_preconditioner.h
flip_generate.h
flip_generate_vel.h
flip_get_velocity_update.h
flip_grad.h

flip_increment.h
flip_index.h
flip_keys.h
flip_kick.h
flip_mag.h
flip_move_particles_in_grid1.h
flip_move_particles_in_grid2.h
flip_order.h
flip_premult_poisson.h
flip_save_velocities.h
flip_scale.h
flip_scale_and_increment.h
flip_sort.h
flip_spawn.h
flip_splat_fluid_markers.h
flip_stagger.h
flip_sum_divergence.h
flip_trilerp_velocities.h
flip_unscale.h

flip_update_from_grid.h
flip_vert_swizzle.h
flip_vorticity.h
flip_vorticity_force.h
flip_zero.h

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

SPU jobs interleave with other work

fluid SPU jobs in purple

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

An overview of FLIP
 FLIP blends the advantages of particle & grid based fluid

solvers
– so it’s a perfect fit to use the voxelization described

earlier to provide collision info
– the voxels will also be used in lighting the particles
– even with very low-resolution grids, you get hardly

any dissipation -> nice looking fluids

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

An overview of FLIP

 Start with some particles with velocities...

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

An overview of FLIP

 project their velocities onto a lo-res (3D) grid

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

An overview of FLIP

 project their velocities onto a lo-res (3D) grid

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

An overview of FLIP

 downsample world voxel grid for collision

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

An overview of FLIP

 fix up velocities with preconditioned conjugate gradient solver

 also handle
collision

 throw in
vorticity
confinement
 especially

for fire

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

An overview of FLIP

 compute changes in velocity, and re-apply to particles

 its this coupling
between grid &
particles that
keeps detail
while allowing
solve to be
cheap

 we use 16384
particles, only
64x32x8 grid!

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Implementation Details
 Particles moved with 2nd order Runga-Kutta
 RSX bound despite rendering at 1/2 res
 Particles & Volume track camera

– easy for us as 2.5D
– some dodgy hacks when the camera zooms

–grid changes scale, fixed resolution
–have to fake it to make gravity appear constant

 Run two independent simulations
 ‘water type’, ‘gas type’

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Gas cloud particles
 Voxel volumes

used for lighting &
soft z; FLIP used
for motion; 1/2 res,
upsampled in post

 SPU sorts
particles using
AASort

Wednesday, 10 August 11
Spawn lots of fairly short lived par;cles randomly from polygon cloud shapes with uniform-‐
ish density. Ramp the alpha to fade in/out over par;cle life;me.
Fluid sim for swirly mo;on.
To render: SPU sorts par;cles front to back (with AASort).
Comp lots of alpha sprites over top of each other. Use RSX MSAA hack to do it at ¼ res
because otherwise it absolutely kills the fill rate.
Sample the ligh;ng volumes in the sprite shader to pick up glow, shadows etc.
Use the AO volume to mul;ply through the alpha channel to do the “soO Z” trick to get rid
of those hideous sprite/mesh intersec;ons. (alpha *= 1-‐solidness of voxel scene at sprite
pos)
Upscale and comp it over the main scene, hope no one no;ces the haloing.

Advances in Real-‐Time Rendering in Games

Gas cloud particles shadows
 gas renders into

variance shadow
maps
– so as to not look

‘pasted on’
 2 hacks to allow for

transparency in
VSM:
– 50% stipple
– shrink particles as

they fade
Wednesday, 10 August 11
Dissolve

PreWy much like gloop case but mesh par;cles turn into gas and fade away.
However we also render variance shadow maps for the par;cles to not look “pasted on”.
Problem: Variance does not do transparency for shadows.
Hack 1: S;pple paWern for par;cle transparency level! Kinda works, if you don’t look too
closely.
50% s;pple so par;cle shadows aren’t as strong as mesh shadows (looks weird otherwise).
Hack 2: Shrink the par;cles that cast shadows by their alpha level – shadows smoothly
disappear with the par;cles.

Advances in Real-‐Time Rendering in Games

Fire/Flamethrowers/Thrusters

Wednesday, 10 August 11
Spawn lots of high velocity par;cles, pick up nice mo;on from fluid sim.

Use vertex shader to extrude par;cle along velocity to do mo;on blur/hide strobing.
Crossfade to a smokey par;cle over the life;me.
Splat the emissive part of the par;cle into 4 channel texture – split on Z values, addi;vely
accumulate grayscale “hotness” for each of 4 layers.
Par;cle comp pass converts hotness to a blackbody color texture, adds it on top of smokey
par;cles renderered with usual alpha blending.
Post FX uses the “hotness” for heat haze effect strength.
Rendering is working quite hard to try to hide the par;cle nature of the system.

Advances in Real-‐Time Rendering in Games

Fire/Flamethrowers/Thrusters

Wednesday, 10 August 11
Spawn lots of high velocity par;cles, pick up nice mo;on from fluid sim.

Use vertex shader to extrude par;cle along velocity to do mo;on blur/hide strobing.
Crossfade to a smokey par;cle over the life;me.
Splat the emissive part of the par;cle into 4 channel texture – split on Z values, addi;vely
accumulate grayscale “hotness” for each of 4 layers.
Par;cle comp pass converts hotness to a blackbody color texture, adds it on top of smokey
par;cles renderered with usual alpha blending.
Post FX uses the “hotness” for heat haze effect strength.
Rendering is working quite hard to try to hide the par;cle nature of the system.

Advances in Real-‐Time Rendering in Games

Fire/Flamethrowers/Thrusters

Wednesday, 10 August 11
Spawn lots of high velocity par;cles, pick up nice mo;on from fluid sim.

Use vertex shader to extrude par;cle along velocity to do mo;on blur/hide strobing.
Crossfade to a smokey par;cle over the life;me.
Splat the emissive part of the par;cle into 4 channel texture – split on Z values, addi;vely
accumulate grayscale “hotness” for each of 4 layers.
Par;cle comp pass converts hotness to a blackbody color texture, adds it on top of smokey
par;cles renderered with usual alpha blending.
Post FX uses the “hotness” for heat haze effect strength.
Rendering is working quite hard to try to hide the par;cle nature of the system.

Advances in Real-‐Time Rendering in Games

Fire/Flamethrowers/Thrusters

Wednesday, 10 August 11
Spawn lots of high velocity par;cles, pick up nice mo;on from fluid sim.

Use vertex shader to extrude par;cle along velocity to do mo;on blur/hide strobing.
Crossfade to a smokey par;cle over the life;me.
Splat the emissive part of the par;cle into 4 channel texture – split on Z values, addi;vely
accumulate grayscale “hotness” for each of 4 layers.
Par;cle comp pass converts hotness to a blackbody color texture, adds it on top of smokey
par;cles renderered with usual alpha blending.
Post FX uses the “hotness” for heat haze effect strength.
Rendering is working quite hard to try to hide the par;cle nature of the system.

Advances in Real-‐Time Rendering in Games

Fire/Flamethrowers/Thrusters

Wednesday, 10 August 11
Spawn lots of high velocity par;cles, pick up nice mo;on from fluid sim.

Use vertex shader to extrude par;cle along velocity to do mo;on blur/hide strobing.
Crossfade to a smokey par;cle over the life;me.
Splat the emissive part of the par;cle into 4 channel texture – split on Z values, addi;vely
accumulate grayscale “hotness” for each of 4 layers.
Par;cle comp pass converts hotness to a blackbody color texture, adds it on top of smokey
par;cles renderered with usual alpha blending.
Post FX uses the “hotness” for heat haze effect strength.
Rendering is working quite hard to try to hide the par;cle nature of the system.

Advances in Real-‐Time Rendering in Games

Fire/Flamethrowers/Thrusters
 Emissive particles split into 4 layers
 splat heat into 4 channel texture
 post shader composites using blackbody palette
 post also uses total heat for ‘heat-haze’ effect
 particles cross fade to smoke / debris
 hot objects splat their shape into the light volume

textures to create local ‘glow’ lights
 was quite difficult to hide the ‘particle’ nature of the

system

Wednesday, 10 August 11
Spawn lots of high velocity par;cles, pick up nice mo;on from fluid sim.

Use vertex shader to extrude par;cle along velocity to do mo;on blur/hide strobing.
Crossfade to a smokey par;cle over the life;me.
Splat the emissive part of the par;cle into 4 channel texture – split on Z values, addi;vely
accumulate grayscale “hotness” for each of 4 layers.
Par;cle comp pass converts hotness to a blackbody color texture, adds it on top of smokey
par;cles renderered with usual alpha blending.
Post FX uses the “hotness” for heat haze effect strength.
Rendering is working quite hard to try to hide the par;cle nature of the system.

Advances in Real-‐Time Rendering in Games

Dissolve / Gloop / Water

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Dissolve / Gloop / Water

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Dissolve / Gloop / Water

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Dissolve / Gloop / Water

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Gloop / Water

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Gloop / Water

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Gloop / Water

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Gloop / Water
• Spawn particles

– randomly distributed over mesh surface
– render pointsprites with ‘normal’ shader
– give initial velocity from rigid body + ‘explosiveness’

• Gloopy particles rendering was tricky
– render normals & unlit color to 1/2 res RTs
– careful thresholding of alpha channel to give art-

directed balance of soft/hard edge & rim light

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

Gloop / Water

Wednesday, 10 August 11
Run a 2nd version of the fluid sim in “water” mode in parallel with the “gas” mode sim!
Can turn an object into goop or gas – randomly sprinkle par;cles over the surface of a
mesh, give an ini;al velocity along the normal. Tune for desired explosiveness.
Drop par;cles into the fluid sim.

Rendering is a major pain in the @$$!
Render point sprites sampling all the fancy materials/ligh;ng/textures/shaders/s;ckers at
the mesh surface points collec;ng the results to another rendertarget to use for par;cle
color.
(Without wri;ng yet another permuta;on of those materials!!)

Advances in Real-‐Time Rendering in Games

Gloop / Water

Wednesday, 10 August 11

Advances in Real-‐Time Rendering in Games

This is as old as the hills!
I ♥ VOXELS and particles!

• This sort of thing has been used for ages for things like god
rays, lighting volume renders, lighting participating media
(eg CUDA SDK sample)...

image from http://www.kinect-hacks.com/kinect-hacks/
2011/03/12/cuda-sdk-smokeparticles-example-using-
kinect

• Don’t underestimate how nice it is to have a
hardware-samplable, filterable, heirachical scene
coverage representation.

Wednesday, 10 August 11
final aside: you can't underestimate how nice it is to have a hardware-samplable (efficient), filterable, heirachical
representation of scene geometry. lots of awesome stuff in this space, see eg gigavoxels, i3d global illumination
paper, but... this is as old as the hills!
can't find the reference, but this algorithm has been used to light participating media, and sky lights:
start by once again voxelizing your scene.
work through the scene in slices, filling in your 'skylight irradiance volume' one slice at a time.
start at the top (sky) most slice; set it all white. blend in that slice of your scene's voxelisation, to make occluders
in that slice go black. (can also have emitters here...)
now, move down to the next slice by blurring and fading the last slice very slightly. repeat.
render scene using resulting skylight volume. YUM. (extra credit: sample volume a few times, off the surface, as
per the AO in lbp2).
extra extra credit: have several passes through the volume in different directions, propegating light between
layers as you go. eg could alternate over the cardinal directions, or up/down, or...
note that this approach can be amortised over multiple frames. stuff that propegates within a frame, 'travels at
the speed of light' (in my terminology); stuff that takes several frames travels slower ('speed of sound'). Not
everything has to go at the speed of light to look good.
food for thought, eh..!

Advances in Real-‐Time Rendering in Games

Thanks!

• I hope that gave you some food for thought.
– simple techniques can give you a lot!

• References are in the slide notes (will be online).
• Thanks to Anton Kirczenow for most of the LBP2 gfx code.
• Thanks to Natalya Tatarchuk for inviting me to the course
• Thanks to MM and Sony WWS for all their hard work on

LBP!
• Follow me on twitter! @mmalex @mediamolecule

Wednesday, 10 August 11
references:

S. THIEDEMANN, N. HENRICH, T. GROSCH, S. MÜLLER 2011 Voxel-based Global Illumination
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (i3D 2011), San Francisco, USA, 2011 (to appear)

BRIDSON, R. 2009. Fluid Simulation For Computer Graphics.
A.K Peters.

CRASSIN, C. , NEYRET, F. , LEFEBVRE, S., AND ISEMANN, E . 2009 Gigavoxels : Ray-guided streaming for efficient and detailed voxel rendering.
I3D ’09: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, ACM.

DACHSBACHER, C. ,AND STAMMINGER, M. 2006. Splatting indirect illumination.
I3D ’06: Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games, ACM

EISEMANN, E. , AND DÉCORET, X. 2006 Fast scene voxelization and applications. In ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, ACM, 71–78.

EVANS, A., 2006 Fast approximations for global illumination on dynamic scenes
ACM SIGGRAPH 2006 Courses – Advances in Real-Time Rendering in 3D Graphics and Games Course

EVANS, A., 2009 LittleBigPlanet - Rendering Post-Mortem
ACM SIGGRAPH 2009 Courses – Advances in Real-Time Rendering in 3D Graphics and Games Course

GREGER, G. , SHIRLEY, P. , HUBBARD, P. M. , AND GREENBERG, D. P. 1998 The irradiance volume.
IEEE Computer Graphics and Applications 18, 32–43.

KAPLANYAN, A., 2009. Light propagation volumes in cryengine 3.
ACM SIGGRAPH 2009 Courses – Advances in Real-Time Rendering in 3D Graphics and Games Course

KAPLANYAN, A. , AND DACHSBACHER, C. 2010 Cascaded light propagation volumes for real-time indirect illumination.
I3D ’10: Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM

RITSCHEL, T. , GROSCH, T. , KIM, M . H. , SEIDEL, H.-P. ,DACHSBACHER, C. , AND KAUTZ, J. 2008 Imperfect shadow maps for efficient
computation of indirect illumination.
ACM Transactions on Graphics, in Proceedings of SIGGRAPH ASIA 2008

Advances in Real-‐Time Rendering in Games

References
S. THIEDEMANN, N. HENRICH, T. GROSCH, S. MÜLLER 2011 Voxel-based Global Illumination
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (i3D 2011), San Francisco, USA, 2011 (to appear)

BRIDSON, R. 2009. Fluid Simulation For Computer Graphics.

A.K Peters.
CRASSIN, C. , NEYRET, F. , LEFEBVRE, S., AND ISEMANN, E . 2009 Gigavoxels : Ray-guided streaming for efficient and detailed voxel rendering. I3D ’09: Proceedings of the 2009
Symposium on Interactive 3D Graphics and Games, ACM.

DACHSBACHER, C. ,AND STAMMINGER, M. 2006. Splatting indirect illumination.
I3D ’06: Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games, ACM

EISEMANN, E. , AND DÉCORET, X. 2006 Fast scene voxelization and applications. In ACM SIGGRAPH Symposium on Interactive

3D Graphics and Games, ACM, 71–78.
EVANS, A., 2006 Fast approximations for global illumination on dynamic scenes

ACM SIGGRAPH 2006 Courses – Advances in Real-Time Rendering in 3D Graphics and Games Course
EVANS, A., 2009 LittleBigPlanet - Rendering Post-Mortem

ACM SIGGRAPH 2009 Courses – Advances in Real-Time Rendering in 3D Graphics and Games Course

GREGER, G. , SHIRLEY, P. , HUBBARD, P. M. , AND GREENBERG, D. P. 1998 The irradiance volume.
IEEE Computer Graphics and Applications 18, 32–43.

KAPLANYAN, A., 2009. Light propagation volumes in cryengine 3.
ACM SIGGRAPH 2009 Courses – Advances in Real-Time Rendering in 3D Graphics and Games Course

KAPLANYAN, A. , AND DACHSBACHER, C. 2010 Cascaded light propagation volumes for real-time indirect illumination.

I3D ’10: Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM
RITSCHEL, T. , GROSCH, T. , KIM, M . H. , SEIDEL, H.-P. ,DACHSBACHER, C. , AND KAUTZ, J. 2008 Imperfect shadow maps for efficient computation of indirect illumination.

ACM Transactions on Graphics, in Proceedings of SIGGRAPH ASIA 2008

Wednesday, 10 August 11

