Pixel Synchronization:

Solving Old Graphics Problems with New Data Structures

Marco Salvi

Advanced Rendering Technology
Intel - San Francisco

!&SIGGRAPH 2013



My Background

« 7 yrsas Gfx Engineer on PC and two generations of Sony & MS consoles
« High performance 3D engines

» Exponential shadow maps & deferred shadowing
« HDR rendering & MSAA with LoglLuv buffers (aka nao32 ©)

Advances in Real-Time Rendering in Games course '/‘S'GGRAPHZOB



My Background

« 7 yrsas Gfx Engineer on PC and two generations of Sony & MS consoles
« High performance 3D engines

» Exponential shadow maps & deferred shadowing
« HDR rendering & MSAA with LoglLuv buffers (aka nao32 ©)

« Intel R&D - Tech Lead in Advanced Rendering Technology team (2008 - present)
« Shadow map filtering & partitioning schemes
 OIT, anti-aliasing, volumetric shadows
 Stochastic rasterization & shader caches
« New graphics architectures

>
Advances in Real-Time Rendering in Games course 'JSIGGRAPHZNS



Talk Outline

 |ntroduction and Problem Statement
 Pixel Synchronization

« Applications & Demos

« Performance Tips & Tricks

e Summary

« QRA

>
Advances in Real-Time Rendering in Games course ’ASIGGRAPHZOB



Problem Statement

» Programmable shaders had (and continue to have) huge impact
« Spurred the development of countless new rendering technigues

VZ’SIGGRAPH 2013

Advances in Real-Time Rendering in Games course



*3D pipeline stages post pixel/fragment shading

Problem Statement

» Programmable shaders had (and continue to have) huge impact
« Spurred the development of countless new rendering technigues

» Pipeline back-end* still not programmable
« (anonly order color, z & stencil operations from a fixed menu.,
« .Dutvery fast and power efficient

¢ QSIGGRAPH 2013

4 Advances in Real-Time Rendering in Games course



*3D pipeline stages post pixel/fragment shading

Problem Statement

» Programmable shaders had (and continue to have) huge impact
« Spurred the development of countless new rendering technigues

» Pipeline back-end* still not programmable
« (anonly order color, z & stencil operations from a fixed menu.,
« .Dutvery fast and power efficient

* Add new programmable back-end?
« Let it coexist side by side with fixed function HW to leverage respective strengths

4 Advances in Real-Time Rendering in Games course '/‘S'GGRAPHZOB



Programmable Back-End

« DX11/0GL 4.2 enable arbitrary R/W memory ops from a pixel shader but..

baSIGGRAPH 2013

Advances in Real-Time Rendering in Games course



Programmable Back-End

« DX11/0GL 4.2 enable arbitrary R/W memory ops from a pixel shader but..

e.g. programmable blending
shade fragment from 15t triangle m

Advances in Real-Time Rendering in Games course 'Z’ SIGERAPHATS



Programmable Back-End

« DX11/0GL 4.2 enable arbitrary R/W memory ops from a pixel shader but..

e.g. programmable blending
shade fragment from 15t triangle m

shade fragment from 2n triangle m

Advances in Real-Time Rendering in Games course 'Z’ SIGERAPHATS




Programmable Back-End

« DX11/0GL 4.2 enable arbitrary R/W memory ops from a pixel shader but..

» Fragments mapping to same pixel can cause data races
i
shade fragment from 15t triangle m

data race

|

shade fragment from 2" triangle

Advances in Real-Time Rendering in Games course ’Z’ SIGERAPHATS



Programmable Back-End

« DX11/0GL 4.2 enable arbitrary R/W memory ops from a pixel shader but..
« Fragments mapping to same pixel can cause data races

hZ)SIGGRAPH 2013

Advances in Real-Time Rendering in Games course



Programmable Back-End

« DX11/0GL 4.2 enable arbitrary R/W memory ops from a pixel shader but..
« Fragments mapping to same pixel can cause data races

shade fragment from 2" triangle m

Advances in Real-Time Rendering in Games course

b&SIGGRAPH 2013



Programmable Back-End

« DX11/0GL 4.2 enable arbitrary R/W memory ops from a pixel shader but..
« Fragments mapping to same pixel can cause data races

shade fragment from 1st triangle m
shade fragment from 2" triangle m

Advances in Real-Time Rendering in Games course

!&SIGGRAPH 2013



Programmable Back-End

« DX11/0GL 4.2 enable arbitrary R/W memory ops from a pixel shader but..
« Fragments mapping to same pixel can cause data races

i
shade fragment from 1st triangle m

dta IS sare

shade fragment from 2" triangle m
i

Advances in Real-Time Rendering in Games course ’g SIGERAPHATS




Programmable Back-End

« DX11/0GL 4.2 enable arbitrary R/W memory ops from a pixel shader but..
« Fragments mapping to same pixel can cause data races
« Fragments can be shaded out-of-order, can't support order-dependent algorithms

i

order is not deterministic —> shade fragment from 1%t triangle m
|
|

\4 | _ i

|
shade fragment from 2" triangle m

!&SIGGRAPH 2013

Advances in Real-Time Rendering in Games course



Programmable Back-End

shade fragment from 1st triangle

Advances in Real-Time Rendering in Games course ’ZJSGGRAPHZOB



Programmable Back-End

shade fragment from 1st triangle

shade fragment from 2" triangle

Advances in Real-Time Rendering in Games course ’ZJSGGRAPHZOB



Programmable Back-End

shade fragment from 1st triangle

shade fragment from 2" triangle

Advances in Real-Time Rendering in Games course '&S'GGRAPH s



Programmable Back-End

« Haswell can detect dependencies among fragments and..

|
shade fragment from 15t triangle m
|
|
|

wait for previous fragmen
to retire

shade fragment from 2" triangle

|

Advances in Real-Time Rendering in Games course '&S'GGRAPH s



Programmable Back-End

« Haswell can detect dependencies among fragments and..

shade fragment from 1st triangle m
shade fragment from 2" triangle m

Advances in Real-Time Rendering in Games course

!&SIGGRAPH 2013



Programmable Back-End

« Haswell can detect dependencies among fragments and..
» Avoid data races

shade fragment from 1st triangle

shade fragment from 2" triangle

bZ)SIGGRAPH 2013

Advances in Real-Time Rendering in Games course



Programmable Back-End

« Haswell can detect dependencies among fragments and..
 Avoid data races
 (uarantee primitive submission order for R/M/W memory operations

shade fragment from 1st triangle

data Is sare

_

well-derinea order

— shade fragment from 2" triangle

8 Advances in Real-Time Rendering in Games course 'ZJSWGRAPHZOB



Pixel Synchronization

« Simple extension for pixel/fragment shaders
» Enable ordering for R/W memory accesses (i.e. same order as alpha-blending)
 Justa function callin your shader: IntelExt BeginPixelOrdering()

§§SIGGRAPH 2013

Advances in Real-Time Rendering in Games course



Pixel Synchronization

« Simple extension for pixel/fragment shaders
» Enable ordering for R/W memory accesses (i.e. same order as alpha-blending)
 Justa function callin your shader: IntelExt BeginPixelOrdering()

« \Very good performance
 Little to no performance impact in most cases
« R/W memory accesses are backed by the full SoC cache hierarchy

¢ Z‘SIGGRAPH 2013

Advances in Real-Time Rendering in Games course



Pixel Synchronization

« Simple extension for pixel/fragment shaders
« Enable ordering for R/W memory accesses (i.e. same order as alpha-blending)
» Justa function call in your shader. IntelExt BeginPixelOrdering()

« \ery good performance
 Little to no performance impact in most cases
* R/W memory accesses are backed by the full SoC cache hierarchy

« More powerful than reading back the frame buffer from a pixel shader

 Build and access data structures of arbitrary size/type/dimensionality (including voxels ©)

» Decoupled from MSAA, can work with per-pixel and/or per-sample data structures
VZ‘SIGGRAPHZOB

Advances in Real-Time Rendering in Games course



10

Example: Blending on a RGBE color buffer

Advances in Real-Time Rendering in Games course 'Z() SIGERAPHZ3



10

Example:

Blending on a RGBE color buffer

?[’Oid PS_RGBE_Blend (...) Initialize shader extensions
IntelExt_Init();

Advances in Real-Time Rendering in Games course ’Z(-)S'GGRAPHZOB



10

Example: Blending on a RGBE color buffer

void PS_RGBE_Blend (...) T :
ompute fragment { Initialize shader extensions
color & alpha IntelExt_Init();

float3 rgb
float alpha

Advances in Real-Time Rendering in Games course ’ZJS'GGRAPH%B



10

Example: Blending on a RGBE color buffer

void PS_RGBE_Blend (...) T :
ompute fragmen { Initialize shader extensions
color & alpha IntelExt_Init();

float3 rgb
float alpha

Enable pixel synchronization
IntelExt_BeginPixelOrdering();

Advances in Real-Time Rendering in Games course »ZJSIGGRAPH2013



10

Example: Blending on a RGBE color buffer

void PS_RGBE_Blend (...) T :
ompute fragmen { Initialize shader extensions
SR — IntelExt_Init();

float3 rgb
float alpha

Enable pixel synchronization
Read RGBE buffer & IntelExt_BeginPixelOrdering();

convert to RGB

uint rgbe
float3 dstRGB

gRGBEBuffer[xy];
RGBE_to_RGB(rgbe);

Advances in Real-Time Rendering in Games course 'Z() SIGERAPHZ3



10

Example: Blending on a RGBE color buffer

void PS_RGBE_Blend (...) T :
ompute fragmen { Initialize shader extensions
SR — IntelExt_Init();

float3 rgb
float alpha

Enable pixel synchronization
Read RGBE buffer & IntelExt_BeginPixelOrdering();

convert to RGB

uint rgbe
float3 dstRGB

gRGBEBuffer[xy];
RGBE_to_RGB(rgbe);

Alpha-blending in

RGB space

dstRGB = alpha * rgb + (1 - alpha) * dstRGB;

Advances in Real-Time Rendering in Games course 'Z() SIGERAPHZ3



Example: Blending on a RGBE color buffer

void PS_RGBE_Blend (...) T :
ompute fragmen { Initialize shader extensions
SR — IntelExt_Init();

float3 rgb
float alpha

Enable pixel synchronization
Read RGBE buffer & IntelExt_BeginPixelOrdering();

convert to RGB

uint rgbe
float3 dstRGB

gRGBEBuffer[xy];
RGBE_to_RGB(rgbe); Alpha-blending in

RGB space

dstRGB = alpha * rgb + (1 - alpha) * dstRGB;

gRGBEBuffer[xy] = RGB_to_RGBE(dstRGB);
Conversion to RGBE &
buffer write

10 Advances in Real-Time Rendering in Games course ’Z)SlGGRAPHZOB



Example: Blending on a RGBE color buffer

void PS RGBE Blend (...)

concurrently with other

{ HEEENS
IntelExt_Init();

float3 rgb
float alpha

IntelExt_BeginPixelOrdering();

uint rgbe
float3 dstRGB

gRGBEBuffer([xy];
RGBE_to_RGB(rgbe);

dstRGB = alpha * rgb + (1 - alpha) * dstRGB;

gRGBEBuffer[xy] = RGB_to_RGBE(dstRGB);

Advances in Real-Time Rendering in Games course ’Z’ SIGERAPHATS



Example: Blending on a RGBE color buffer

void PS RGBE Blend (...)

concurrently with other

{ HEEENS
IntelExt_Init();

float3 rgb
float alpha

might wait for the IntelExt_BeginPixelOrdering();
retirement of other

fragments that map to uint rgbe
the same pixel float3 dstRGB

gRGBEBuffer[xy];
RGBE_to_RGB(rgbe);

dstRGB = alpha * rgb + (1 - alpha) * dstRGB;

gRGBEBuffer[xy] = RGB_to_RGBE(dstRGB);

Advances in Real-Time Rendering in Games course ’a SIGERAPHATS



A Few Programmable Blending Applications

« New blending operators, non-linear color spaces, exotic encodings, etc.
« e0.RGBE, Logluy, etc.

!&SIGGRAPH 2013

Advances in Real-Time Rendering in Games course



A Few Programmable Blending Applications

« New blending operators, non-linear color spaces, exotic encodings, etc.
« e0.RGBE, Logluy, etc.

« Blending for deferred shaders
* eq. Apply decals by blending normals and other material attributes

baSIGGRAPH 2013

Advances in Real-Time Rendering in Games course



*Bavoil et al. “Multi-fragment effects on the GPU using the k-buffer”. Proceedings of the 2007 symposium on Interactive 3D graphics and games

K-Buffer

« (Generalization of the Z-Buffer*
» Render N-layers of the image in a single pass

13 Advances in Real-Time Rendering in Games course

¢ Z‘SIGGRAPH 2013



*Bavoil et al. “Multi-fragment effects on the GPU using the k-buffer”. Proceedings of the 2007 symposium on Interactive 3D graphics and games

K-Buffer

e Generalization of the Z-Buffer*

Render N-layers of the image in a single pass

« Countless applications:

Depth-peeling

Constructive solid geometry
Depth-of-field & motion blur
\/olume rendering

<insert your idea here ©>

Advances in Real-Time Rendering in Games course

\Z‘SIGGRAPH 2013



14

K-Buffer: Single-Pass Depth Peeling

Compute fragment
color, z, etc..

void PSMain(...)

{
IntelExt_Init();

Fragment frag = {...};

Advances in Real-Time Rendering in Games course

@SIGGRAPH 2013



14

K-Buffer: Single-Pass Depth Peeling

Compute fragment
color, z, etc..

void PSMain(...)

{
IntelExt_Init();

Fragment frag = {...};
Enable pixel synchronization

IntelExt_BeginPixelOrdering();

Advances in Real-Time Rendering in Games course

Q&SIGGRAPH 2013



14

K-Buffer: Single-Pass Depth Peeling

Compute fragment
color, z, etc..

void PSMain(...)
{

IntelExt_Init();

Fragment frag = {...};
Enable pixel synchronization
Read N fragments

IntelExt_BeginPixelOrdering();

from K-buffer

Fragment fragArray[N] = gBuffer[xy];

Advances in Real-Time Rendering in Games course 'Z() SIOGRAPHZ01



14

K-Buffer: Single-Pass Depth Peeling

Compute fragment
color, z, etc..

void PSMain(...)

{
IntelExt_Init();

Fragment frag = {...};
Enable pixel synchronization
Read N fragments

IntelExt_BeginPixelOrdering();

from K-buffer

Fragment fragArray[N] = gBuffer[xy];
for (int i =0; i < N; i++) {

if (frag.zZ < fragArray[i].Z) { Bubble sort (1 pass)
Fragment temp = frag;

frag
fragArray[i]

fragArray[i];
temp;

Advances in Real-Time Rendering in Games course

V&SIGGRAPH 2013



14

K-Buffer: Single-Pass Depth Peeling

Compute fragment
color, z, etc..

void PSMain(...)
{

IntelExt_Init();

Read N fragments

from K-buffer IntelExt_BeginPixelOrdering();

Fragment fragArray[N] = gBuffer[xy];
for (int i =0; i < N; i++) {

Fragment frag = {...};
Enable pixel synchronization

if (frag.zZ < fragArray[i].Z) { Bubble sort (1 pass)
Fragment temp = frag;

frag
fragArray[i]

fragArray[i];
temp;

Write N fragments
to K-buffer

}
gBuffer[xy] = fragArray;

Advances in Real-Time Rendering in Games course

V&SIGGRAPH 2013



Order-Independent Transparency

« Why order-independent transparency?
 (Correct compositing, rendering foliage & fences with zero aliasing ©, etc.

Advances in Real-Time Rendering in Games course

!&SIGGRAPH 2013



Order-Independent Transparency

« Why order-independent transparency?
 (Correct compositing, rendering foliage & fences with zero aliasing ©, etc.

« DX11-style order-independent transparency has significant drawbacks
» Requires unbounded memory (per-pixel lists)
» Not so great performance due to global atomics, fragments sorting, etc,

hZ)SIGGRAPH 2013

Advances in Real-Time Rendering in Games course



Order-Independent Transparency

« Why order-independent transparency?
 (Correct compositing, rendering foliage & fences with zero aliasing ©, etc.

« DX11-style order-independent transparency has significant drawbacks
» Requires unbounded memory (per-pixel lists)
» Not so great performance due to global atomics, fragments sorting, etc,

« Pixel Synchronization enables new methods
« Single geometry pass and fixed memory requirements
 Stable and predictable performance
» Scalable; easily trade-off image quality for performance/memory

VZ?SIGGRAPH 2013

Advances in Real-Time Rendering in Games course



16

A Recipe for Order-Independent Transparency

Advances in Real-Time Rendering in Games course 'Z() SIGERAPHZ3



A Recipe for Order-Independent Transparency

« Step 1: Improve alpha-blending
« Use depth to decide whether to composite incoming fragment over or under
« Much better than vanilla alpha-blending but in some cases not quite correct

Advances in Real-Time Rendering in Games course ’g SIGERAPHATS



A Recipe for Order-Independent Transparency

« Step 1: Improve alpha-blending
« Use depth to decide whether to composite incoming fragment over or under
« Much better than vanilla alpha-blending but in some cases not quite correct

« Step 2: Make it even better by distributing the error over multiple terms
« Store N layers per pixel & pick the "best” one when compositing incoming fragment
« Use full screen pass to resolve data and blend resulting color over opaque color buffer

VZ)SIGGRAPH 2013

Advances in Real-Time Rendering in Games course



A Recipe for Order-Independent Transparency

« Step 1: Improve alpha-blending
« Use depth to decide whether to composite incoming fragment over or under
« Much better than vanilla alpha-blending but in some cases not quite correct

« Step 2: Make it even better by distributing the error over multiple terms
« Store N layers per pixel & pick the "best” one when compositing incoming fragment
« Use full screen pass to resolve data and blend resulting color over opaque color buffer

« Step 3: Use more layers to trade-off image quality for perf/memory

hZ)SIGGRAPH 2013

Advances in Real-Time Rendering in Games course



*Salvi et al. “Adaptive Volumetric Shadow Maps”. Computer Graphics Forum (Proceedings of EGSR 2010), vol. 29(4), pp. 1289-1296, June 2010.

Deep Shadow Maps

« DSMs encode per-pixel visibility function from light point-of-view
« Typically used to render volumetric shadows
» Developed by Pixar for off-line rendering, require unbounded memory

¢ QSIGGRAPH 2013

17 Advances in Real-Time Rendering in Games course



*Salvi et al. “Adaptive Volumetric Shadow Maps”. Computer Graphics Forum (Proceedings of EGSR 2010), vol. 29(4), pp. 1289-1296, June 2010.

Deep Shadow Maps

« DSMs encode per-pixel visibility function from light point-of-view
« Typically used to render volumetric shadows
» Developed by Pixar for off-line rendering, require unbounded memory

« Adaptive Volumetric Shadow Maps*
« Like DSMs but designed for real-time rendering
« Lossy compression of the visibility data

17 Advances in Real-Time Rendering in Games course '/‘S'GGRAPHZOB



*Salvi et al. “Adaptive Volumetric Shadow Maps”. Computer Graphics Forum (Proceedings of EGSR 2010), vol. 29(4), pp. 1289-1296, June 2010.

Deep Shadow Maps

« DSMs encode per-pixel visibility function from light point-of-view
« Typically used to render volumetric shadows
» Developed by Pixar for off-line rendering, require unbounded memory

« Adaptive Volumetric Shadow Maps*
« Like DSMs but designed for real-time rendering
« Lossy compression of the visibility data

» Pixel synchronization enables first fixed memory implementation of AVSM
 Demo ©

”;
17 Advances in Real-Time Rendering in Games course '/‘S'GGRAPH%B



Voxelization

« Build complex per-voxel data structures on the GPU at voxelization time
« eg.direction-dependent representations (anisotropic voxels, etc.)

¢ Z‘SIGGRAPH 2013

Advances in Real-Time Rendering in Games course



Voxelization

Build complex per-voxel data structures on the GPU at voxelization time
« eg.direction-dependent representations (anisotropic voxels, etc.)

Voxelization via 2D rasterization projects triangles to XY, YZ or XZ plane
« But global atomic ops are slow and pose significant restrictions on struct size, type, etc.

>
Advances in Real-Time Rendering in Games course ./‘SIGGRAPH2013



Voxelization

Build complex per-voxel data structures on the GPU at voxelization time
« eg.direction-dependent representations (anisotropic voxels, etc.)

Voxelization via 2D rasterization projects triangles to XY, YZ or XZ plane
« But global atomic ops are slow and pose significant restrictions on struct size, type, etc.

Use pixel synchronization to build 3D data structures at voxelization time
* Problem: fragment dependencies cannot be tracked over multiple 2D planes

>
Advances in Real-Time Rendering in Games course 'JSIGGRAPHZNS



Voxelization

Build complex per-voxel data structures on the GPU at voxelization time
« eg.direction-dependent representations (anisotropic voxels, etc.)

Voxelization via 2D rasterization projects triangles to XY, YZ or XZ plane
« But global atomic ops are slow and pose significant restrictions on struct size, type, etc.

Use pixel synchronization to build 3D data structures at voxelization time
* Problem: fragment dependencies cannot be tracked over multiple 2D planes

Easy fix: voxelize onto one 2D plane at time
« 3 draw calls per mesh, one per 2D plane (i.e. reject triangles that map to other planes)
« Number of generated voxels doesn't change & more flexible than using global atomics

>
Advances in Real-Time Rendering in Games course 'JSIGGRAPHZNS



Advanced Anti-Aliasing

Use pixel synchronization to improve or replace multi-sampling anti-aliasing
« Higherimage quality vs. lower memory requirements vs. better performance

hZ)SIGGRAPH 2013

Advances in Real-Time Rendering in Games course



*Jouppi et al. “Z%: an economical hardware technique for high-quality antialiasing and transparency”. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware

Advanced Anti-Aliasing

« Use pixel synchronization to improve or replace multi-sampling anti-aliasing
« Higherimage quality vs. lower memory requirements vs. better performance

« /3 anti-aliasing™ (1999)
 Originally developed as HW based high-quality anti-aliasing algorithm

 Store N fragment per pixel (z, 0z/0x, 0z/dy, color, coverage)
* Merge fragments (lossy)

¢ QSIGGRAPH 2013

19 Advances in Real-Time Rendering in Games course



*Jouppi et al. “Z%: an economical hardware technique for high-quality antialiasing and transparency”. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware

Advanced Anti-Aliasing

« Use pixel synchronization to improve or replace multi-sampling anti-aliasing
« Higherimage quality vs. lower memory requirements vs. better performance

« /3 anti-aliasing™ (1999)
 Originally developed as HW based high-quality anti-aliasing algorithm

 Store N fragment per pixel (z, 0z/0x, 0z/dy, color, coverage)
* Merge fragments (lossy)

* Analytic methods
» Render scene using conservative rasterization
 Build per-pixel spatial subdivision structure using primitive edges (per-pixel BSP? ©)
« (Compute fragment weights from fraction of pixel area covered by leaf cells and resolve

19 Advances in Real-Time Rendering in Games course '/‘S'GGRAPHZOB



20

Performance Tips & Tricks

Don't clear large buffers. Clear a small buffer and use it as a clear mask.

baSIGGRAPH 2013

Advances in Real-Time Rendering in Games course



20

Performance Tips & Tricks

« Don't clear large buffers. Clear a small buffer and use it as a clear mask.

bool clear = gClearMask[xy];

Advances in Real-Time Rendering in Games course ’g SIGERAPHATS



20

Performance Tips & Tricks

« Don't clear large buffers. Clear a small buffer and use it as a clear mask.

bool clear = gClearMask[xy]; AR A

initialize large struct

if (clear) {
gClearMask[xy]
myLargeStruct

false;

Advances in Real-Time Rendering in Games course ’a SIGERAPHATS



20

Performance Tips & Tricks

Don't clear large buffers. Clear a small buffer and use it as a clear mask.

bool clear = gClearMask[xy]; I SO

initialize large struct

if (clear) {

gClearMask[xy] = false;
myLargeStruct =
} else {
myLargeStruct = glargeDataStruct[xy];

If pixel is not in clear
state load large struct

and update it

Advances in Real-Time Rendering in Games course '& SIGGRAPHM2013



20

Performance Tips & Tricks

if (clear) {

gClearMask[xy] =
myLargeStruct =
} else {
myLargeStruct =
If pixel is not in clear
state load large struct
and update it
glLargeDataStruct[xy]

Mark pixel as “used” and
initialize large struct

false;

gLargeDataStruct[xy];

Write large struct data

back to memory
= myStruct;

Advances in Real-Time Rendering in Games course

Don't clear large buffers. Clear a small buffer and use it as a clear mask.

bool clear = gClearMask[xy];

!&SlGGRAPH 2013



20

Performance Tips & Tricks

v
bool clear = gClearMask[xy]; I SO

initialize large struct

if (clear) {

gClearMask[xy] = false;
myLargeStruct =
} else {
myLargeStruct = glargeDataStruct[xy];

If pixel is not in clear
state load large struct

and update it Write large struct data

back to memory
gLargeDataStruct[xy] = myStruct;

Advances in Real-Time Rendering in Games course

Don't clear large buffers. Clear a small buffer and use it as a clear mask.

!&SlGGRAPH 2013



20

Performance Tips & Tricks

if (clear) {

gClearMask[xy] =
myLargeStruct =
} else {
myLargeStruct =
If pixel is not in clear
state load large struct
and update it
glLargeDataStruct[xy]

Mark pixel as “used” and
initialize large struct

false;

gLargeDataStruct[xy];

Write large struct data

back to memory
= myStruct;

Advances in Real-Time Rendering in Games course

Don't clear large buffers. Clear a small buffer and use it as a clear mask.

v
bool clear = gClearMask[xy];

!&SIGGRAPH 2013



21

Performance Tips & Tricks

« Small(er) data structures can improve performance
« Use more instructions to pack/unpack data
 Balance data structure size and amount of packing/unpacking code

Advances in Real-Time Rendering in Games course

hZ)SIGGRAPH 2013



21

Performance Tips & Tricks

« Small(er) data structures can improve performance
« Use more instructions to pack/unpack data
 Balance data structure size and amount of packing/unpacking code

« Address 1D structured buffers as tiled to better data exploit locality
o egq. Ix2or2xe (2D textures), 2x2x2 (voxels), etc.,

§§SIGGRAPH 2013

Advances in Real-Time Rendering in Games course



21

Performance Tips & Tricks

« Small(er) data structures can improve performance
« Use more instructions to pack/unpack data
 Balance data structure size and amount of packing/unpacking code

« Address 1D structured buffers as tiled to better data exploit locality
o egq. Ix2or2xe (2D textures), 2x2x2 (voxels), etc.,

« Prefer inserting the synchronization point in the second half of the shader
 Increase likelihood of concurrently shading fragments that map to the same pixel
« Corollary: use HW z-test when possible for better performance (Hi-Z is fastl)

¢ Z‘SIGGRAPH 2013

Advances in Real-Time Rendering in Games course



22

Summary

Programmable shading revolutionized real-time rendering
« .but the revolution did not include the tail of the pipeline

Advances in Real-Time Rendering in Games course

\Z‘SIGGRAPH 2013



22

Summary

Programmable shading revolutionized real-time rendering
« .but the revolution did not include the tail of the pipeline

Pixel synchronization is a new tool that injects new life in the 3D pipeline

>
Advances in Real-Time Rendering in Games course ,”SIGGRAPH2013



22

Summary

Programmable shading revolutionized real-time rendering
« .but the revolution did not include the tail of the pipeline

Pixel synchronization is a new tool that injects new life in the 3D pipeline
1. Pick the per-pixel data structure that can better solve your rendering problem

>
Advances in Real-Time Rendering in Games course ,”SIGGRAPH2013



22

Summary

Programmable shading revolutionized real-time rendering
« .but the revolution did not include the tail of the pipeline

Pixel synchronization is a new tool that injects new life in the 3D pipeline
1. Pick the per-pixel data structure that can better solve your rendering problem
2. Draw geometry to build your data in a streaming fashion

>
Advances in Real-Time Rendering in Games course 'JSIGGRAPHZNS



22

Summary

Programmable shading revolutionized real-time rendering
« .but the revolution did not include the tail of the pipeline

Pixel synchronization is a new tool that injects new life in the 3D pipeline
1. Pick the per-pixel data structure that can better solve your rendering problem
2. Draw geometry to build your data in a streaming fashion
3. Use the data & enjoy your results (sip tea or coffee ©)

>
Advances in Real-Time Rendering in Games course ,”SIGGRAPH2013



22

Summary

Programmable shading revolutionized real-time rendering
« .but the revolution did not include the tail of the pipeline

Pixel synchronization is a new tool that injects new life in the 3D pipeline
1. Pick the per-pixel data structure that can better solve your rendering problem
2. Draw geometry to build your data in a streaming fashion
3. Use the data & enjoy your results (sip tea or coffee ©)

DX11+ extension available now (download demos), OpenGL extension in
development.

>
Advances in Real-Time Rendering in Games course ,”SIGGRAPH2013



23

Q&A

Acknowledgements

e The ART team

« Tom Piazza, Chuck Lingle, Tomasz Janczak , Prasoon Surti, Mike Dwyer, Andy Dayton, Mike Apodaca, Aaron Lefohn,
Larry Seiler, Leigh Davies, Filip Strugar, Matthew Fife, Steve Hughes, Axel Mamode, Richard Huddy and many others

Source code
« Programmable Blending: bit.ly/pixelsync_pb
Order-Independent Transparency: bit.ly/pixelsync_oit
« Adaptive Volumetric Shadow Maps:  bit.ly/pixelsync_avsm

Contacts
e e-mail: marco.salvi@intel.com
e twitter, @marcosalvi

>
Advances in Real-Time Rendering in Games course ./‘SIGGRAPH2013



