
Pixel Synchronization:
Solving Old Graphics Problems with New Data Structures

Marco Salvi
Advanced Rendering Technology

Intel - San Francisco

My Background

• 7 yrs as Gfx Engineer on PC and two generations of Sony & MS consoles

• High performance 3D engines

• Exponential shadow maps & deferred shadowing

• HDR rendering & MSAA with LogLuv buffers (aka nao32)

Advances in Real-Time Rendering in Games course2

My Background

• 7 yrs as Gfx Engineer on PC and two generations of Sony & MS consoles

• High performance 3D engines

• Exponential shadow maps & deferred shadowing

• HDR rendering & MSAA with LogLuv buffers (aka nao32)

• Intel R&D – Tech Lead in Advanced Rendering Technology team (2008 – present)

• Shadow map filtering & partitioning schemes

• OIT, anti-aliasing, volumetric shadows

• Stochastic rasterization & shader caches

• New graphics architectures © Codemasters

Advances in Real-Time Rendering in Games course2

Talk Outline

• Introduction and Problem Statement

• Pixel Synchronization

• Applications & Demos

• Performance Tips & Tricks

• Summary

• Q&A

Advances in Real-Time Rendering in Games course3

Problem Statement

• Programmable shaders had (and continue to have) huge impact

• Spurred the development of countless new rendering techniques

Advances in Real-Time Rendering in Games course4

Problem Statement

• Programmable shaders had (and continue to have) huge impact

• Spurred the development of countless new rendering techniques

• Pipeline back-end* still not programmable

• Can only order color, z & stencil operations from a fixed menu..

• ..but very fast and power efficient

*3D pipeline stages post pixel/fragment shading

Advances in Real-Time Rendering in Games course4

Problem Statement

• Programmable shaders had (and continue to have) huge impact

• Spurred the development of countless new rendering techniques

• Pipeline back-end* still not programmable

• Can only order color, z & stencil operations from a fixed menu..

• ..but very fast and power efficient

• Add new programmable back-end?

• Let it coexist side by side with fixed function HW to leverage respective strengths

*3D pipeline stages post pixel/fragment shading

Advances in Real-Time Rendering in Games course4

Programmable Back-End

• DX11/OGL 4.2 enable arbitrary R/W memory ops from a pixel shader but..

Advances in Real-Time Rendering in Games course5

Programmable Back-End

• DX11/OGL 4.2 enable arbitrary R/W memory ops from a pixel shader but..

shade fragment from 1st triangle r/m/w

e.g. programmable blending

Advances in Real-Time Rendering in Games course5

Programmable Back-End

• DX11/OGL 4.2 enable arbitrary R/W memory ops from a pixel shader but..

shade fragment from 1st triangle

shade fragment from 2nd triangle r/m/w

r/m/w

e.g. programmable blending

Advances in Real-Time Rendering in Games course5

Programmable Back-End

• DX11/OGL 4.2 enable arbitrary R/W memory ops from a pixel shader but..

• Fragments mapping to same pixel can cause data races

shade fragment from 1st triangle

shade fragment from 2nd triangle r/m/w

r/m/w

data race

e.g. programmable blending

Advances in Real-Time Rendering in Games course5

Programmable Back-End

• DX11/OGL 4.2 enable arbitrary R/W memory ops from a pixel shader but..

• Fragments mapping to same pixel can cause data races

Advances in Real-Time Rendering in Games course6

Programmable Back-End

• DX11/OGL 4.2 enable arbitrary R/W memory ops from a pixel shader but..

• Fragments mapping to same pixel can cause data races

shade fragment from 2nd triangle r/m/w

Advances in Real-Time Rendering in Games course6

Programmable Back-End

• DX11/OGL 4.2 enable arbitrary R/W memory ops from a pixel shader but..

• Fragments mapping to same pixel can cause data races

shade fragment from 1st triangle

shade fragment from 2nd triangle r/m/w

r/m/w

Advances in Real-Time Rendering in Games course6

Programmable Back-End

• DX11/OGL 4.2 enable arbitrary R/W memory ops from a pixel shader but..

• Fragments mapping to same pixel can cause data races

shade fragment from 1st triangle

shade fragment from 2nd triangle r/m/w

r/m/w

data is safe

Advances in Real-Time Rendering in Games course6

Programmable Back-End

• DX11/OGL 4.2 enable arbitrary R/W memory ops from a pixel shader but..

• Fragments mapping to same pixel can cause data races

• Fragments can be shaded out-of-order, can’t support order-dependent algorithms

shade fragment from 1st triangle

shade fragment from 2nd triangle r/m/w

r/m/w

data is safe

order is not deterministic

Advances in Real-Time Rendering in Games course6

Programmable Back-End

shade fragment from 1st triangle r/m/w

Advances in Real-Time Rendering in Games course7

Programmable Back-End

shade fragment from 1st triangle

shade fragment from 2nd triangle

r/m/w

r/m/w

Advances in Real-Time Rendering in Games course7

Programmable Back-End

shade fragment from 1st triangle

shade fragment from 2nd triangle

r/m/w

r/m/w

Advances in Real-Time Rendering in Games course7

Programmable Back-End

• Haswell can detect dependencies among fragments and..

shade fragment from 1st triangle

shade fragment from 2nd triangle

r/m/w

r/m/w

wait for previous fragment
to retire

Advances in Real-Time Rendering in Games course7

Programmable Back-End

• Haswell can detect dependencies among fragments and..

shade fragment from 1st triangle

shade fragment from 2nd triangle

r/m/w

wait r/m/w

Advances in Real-Time Rendering in Games course8

Programmable Back-End

• Haswell can detect dependencies among fragments and..

• Avoid data races

shade fragment from 1st triangle

shade fragment from 2nd triangle

r/m/w

wait r/m/w

data is safe

Advances in Real-Time Rendering in Games course8

Programmable Back-End

• Haswell can detect dependencies among fragments and..

• Avoid data races

• Guarantee primitive submission order for R/M/W memory operations

shade fragment from 1st triangle

shade fragment from 2nd triangle

r/m/w

wait r/m/w

data is safe

well-defined order

Advances in Real-Time Rendering in Games course8

Pixel Synchronization

• Simple extension for pixel/fragment shaders

• Enable ordering for R/W memory accesses (i.e. same order as alpha-blending)

• Just a function call in your shader: IntelExt_BeginPixelOrdering()

Advances in Real-Time Rendering in Games course9

Pixel Synchronization

• Simple extension for pixel/fragment shaders

• Enable ordering for R/W memory accesses (i.e. same order as alpha-blending)

• Just a function call in your shader: IntelExt_BeginPixelOrdering()

• Very good performance
• Little to no performance impact in most cases

• R/W memory accesses are backed by the full SoC cache hierarchy

Advances in Real-Time Rendering in Games course9

Pixel Synchronization

• Simple extension for pixel/fragment shaders

• Enable ordering for R/W memory accesses (i.e. same order as alpha-blending)

• Just a function call in your shader: IntelExt_BeginPixelOrdering()

• Very good performance

• Little to no performance impact in most cases

• R/W memory accesses are backed by the full SoC cache hierarchy

• More powerful than reading back the frame buffer from a pixel shader

• Build and access data structures of arbitrary size/type/dimensionality (including voxels)

• Decoupled from MSAA, can work with per-pixel and/or per-sample data structures

Advances in Real-Time Rendering in Games course9

Example: Blending on a RGBE color buffer

Advances in Real-Time Rendering in Games course10

Example: Blending on a RGBE color buffer

void PS_RGBE_Blend (...)
{

IntelExt_Init();

Initialize shader extensions

Advances in Real-Time Rendering in Games course10

Example: Blending on a RGBE color buffer

void PS_RGBE_Blend (...)
{

IntelExt_Init();

float3 rgb = ...

float alpha = ...

Compute fragment
color & alpha

Initialize shader extensions

Advances in Real-Time Rendering in Games course10

Example: Blending on a RGBE color buffer

void PS_RGBE_Blend (...)
{

IntelExt_Init();

float3 rgb = ...

float alpha = ...

IntelExt_BeginPixelOrdering();

Enable pixel synchronization

Compute fragment
color & alpha

Initialize shader extensions

Advances in Real-Time Rendering in Games course10

Example: Blending on a RGBE color buffer

void PS_RGBE_Blend (...)
{

IntelExt_Init();

float3 rgb = ...

float alpha = ...

IntelExt_BeginPixelOrdering();

uint rgbe = gRGBEBuffer[xy];

float3 dstRGB = RGBE_to_RGB(rgbe);

Enable pixel synchronization

Compute fragment
color & alpha

Read RGBE buffer &
convert to RGB

Initialize shader extensions

Advances in Real-Time Rendering in Games course10

Example: Blending on a RGBE color buffer

void PS_RGBE_Blend (...)
{

IntelExt_Init();

float3 rgb = ...

float alpha = ...

IntelExt_BeginPixelOrdering();

uint rgbe = gRGBEBuffer[xy];

float3 dstRGB = RGBE_to_RGB(rgbe);

dstRGB = alpha * rgb + (1 – alpha) * dstRGB;

Enable pixel synchronization

Compute fragment
color & alpha

Read RGBE buffer &
convert to RGB

Alpha-blending in
RGB space

Initialize shader extensions

Advances in Real-Time Rendering in Games course10

Example: Blending on a RGBE color buffer

void PS_RGBE_Blend (...)
{

IntelExt_Init();

float3 rgb = ...

float alpha = ...

IntelExt_BeginPixelOrdering();

uint rgbe = gRGBEBuffer[xy];

float3 dstRGB = RGBE_to_RGB(rgbe);

dstRGB = alpha * rgb + (1 – alpha) * dstRGB;

gRGBEBuffer[xy] = RGB_to_RGBE(dstRGB);
}

Enable pixel synchronization

Compute fragment
color & alpha

Read RGBE buffer &
convert to RGB

Alpha-blending in
RGB space

Conversion to RGBE &
buffer write

Initialize shader extensions

Advances in Real-Time Rendering in Games course10

Example: Blending on a RGBE color buffer

void PS_RGBE_Blend (...)

{

IntelExt_Init();

float3 rgb = ...

float alpha = ...

IntelExt_BeginPixelOrdering();

uint rgbe = gRGBEBuffer[xy];

float3 dstRGB = RGBE_to_RGB(rgbe);

dstRGB = alpha * rgb + (1 – alpha) * dstRGB;

gRGBEBuffer[xy] = RGB_to_RGBE(dstRGB);

}

always run
concurrently with other

fragments

Advances in Real-Time Rendering in Games course11

Example: Blending on a RGBE color buffer

void PS_RGBE_Blend (...)

{

IntelExt_Init();

float3 rgb = ...

float alpha = ...

IntelExt_BeginPixelOrdering();

uint rgbe = gRGBEBuffer[xy];

float3 dstRGB = RGBE_to_RGB(rgbe);

dstRGB = alpha * rgb + (1 – alpha) * dstRGB;

gRGBEBuffer[xy] = RGB_to_RGBE(dstRGB);

}

always run
concurrently with other

fragments

might wait for the
retirement of other

fragments that map to
the same pixel

Advances in Real-Time Rendering in Games course11

A Few Programmable Blending Applications

• New blending operators, non-linear color spaces, exotic encodings, etc.

• e.g. RGBE, LogLuv, etc.

Advances in Real-Time Rendering in Games course12

A Few Programmable Blending Applications

• New blending operators, non-linear color spaces, exotic encodings, etc.

• e.g. RGBE, LogLuv, etc.

• Blending for deferred shaders

• e.g. Apply decals by blending normals and other material attributes

Advances in Real-Time Rendering in Games course12

K-Buffer

• Generalization of the Z-Buffer*

• Render N-layers of the image in a single pass

*Bavoil et al. “Multi-fragment effects on the GPU using the k-buffer”. Proceedings of the 2007 symposium on Interactive 3D graphics and games

Advances in Real-Time Rendering in Games course13

K-Buffer

• Generalization of the Z-Buffer*

• Render N-layers of the image in a single pass

• Countless applications:

• Depth-peeling

• Constructive solid geometry

• Depth-of-field & motion blur

• Volume rendering

• ...

• <insert your idea here >

*Bavoil et al. “Multi-fragment effects on the GPU using the k-buffer”. Proceedings of the 2007 symposium on Interactive 3D graphics and games

Advances in Real-Time Rendering in Games course13

K-Buffer: Single-Pass Depth Peeling
void PSMain(...)

{

IntelExt_Init();

Fragment frag = {...};

Compute fragment
color, z, etc..

Advances in Real-Time Rendering in Games course14

K-Buffer: Single-Pass Depth Peeling
void PSMain(...)

{

IntelExt_Init();

Fragment frag = {...};

IntelExt_BeginPixelOrdering();

Enable pixel synchronization

Compute fragment
color, z, etc..

Advances in Real-Time Rendering in Games course14

K-Buffer: Single-Pass Depth Peeling
void PSMain(...)

{

IntelExt_Init();

Fragment frag = {...};

IntelExt_BeginPixelOrdering();

Fragment fragArray[N] = gBuffer[xy];

Enable pixel synchronization

Compute fragment
color, z, etc..

Read N fragments
from K-buffer

Advances in Real-Time Rendering in Games course14

K-Buffer: Single-Pass Depth Peeling
void PSMain(...)

{

IntelExt_Init();

Fragment frag = {...};

IntelExt_BeginPixelOrdering();

Fragment fragArray[N] = gBuffer[xy];

for (int i = 0; i < N; i++) {

if (frag.Z < fragArray[i].Z) {

Fragment temp = frag;

frag = fragArray[i];

fragArray[i] = temp;

}

}

Enable pixel synchronization

Compute fragment
color, z, etc..

Read N fragments
from K-buffer

Bubble sort (1 pass)

Advances in Real-Time Rendering in Games course14

K-Buffer: Single-Pass Depth Peeling
void PSMain(...)

{

IntelExt_Init();

Fragment frag = {...};

IntelExt_BeginPixelOrdering();

Fragment fragArray[N] = gBuffer[xy];

for (int i = 0; i < N; i++) {

if (frag.Z < fragArray[i].Z) {

Fragment temp = frag;

frag = fragArray[i];

fragArray[i] = temp;

}

}

gBuffer[xy] = fragArray;
}

Enable pixel synchronization

Compute fragment
color, z, etc..

Read N fragments
from K-buffer

Bubble sort (1 pass)

Write N fragments
to K-buffer

Advances in Real-Time Rendering in Games course14

Order-Independent Transparency

• Why order-independent transparency?

• Correct compositing, rendering foliage & fences with zero aliasing , etc..

Advances in Real-Time Rendering in Games course15

Order-Independent Transparency

• Why order-independent transparency?

• Correct compositing, rendering foliage & fences with zero aliasing , etc..

• DX11-style order-independent transparency has significant drawbacks

• Requires unbounded memory (per-pixel lists)

• Not so great performance due to global atomics, fragments sorting, etc.

Advances in Real-Time Rendering in Games course15

Order-Independent Transparency

• Why order-independent transparency?

• Correct compositing, rendering foliage & fences with zero aliasing , etc..

• DX11-style order-independent transparency has significant drawbacks

• Requires unbounded memory (per-pixel lists)

• Not so great performance due to global atomics, fragments sorting, etc.

• Pixel Synchronization enables new methods

• Single geometry pass and fixed memory requirements

• Stable and predictable performance

• Scalable: easily trade-off image quality for performance/memory

Advances in Real-Time Rendering in Games course15

A Recipe for Order-Independent Transparency

Advances in Real-Time Rendering in Games course16

A Recipe for Order-Independent Transparency

• Step 1: Improve alpha-blending

• Use depth to decide whether to composite incoming fragment over or under

• Much better than vanilla alpha-blending but in some cases not quite correct

Advances in Real-Time Rendering in Games course16

A Recipe for Order-Independent Transparency

• Step 1: Improve alpha-blending

• Use depth to decide whether to composite incoming fragment over or under

• Much better than vanilla alpha-blending but in some cases not quite correct

• Step 2: Make it even better by distributing the error over multiple terms

• Store N layers per pixel & pick the “best” one when compositing incoming fragment

• Use full screen pass to resolve data and blend resulting color over opaque color buffer

Advances in Real-Time Rendering in Games course16

A Recipe for Order-Independent Transparency

• Step 1: Improve alpha-blending

• Use depth to decide whether to composite incoming fragment over or under

• Much better than vanilla alpha-blending but in some cases not quite correct

• Step 2: Make it even better by distributing the error over multiple terms

• Store N layers per pixel & pick the “best” one when compositing incoming fragment

• Use full screen pass to resolve data and blend resulting color over opaque color buffer

• Step 3: Use more layers to trade-off image quality for perf/memory

Advances in Real-Time Rendering in Games course16

Deep Shadow Maps

• DSMs encode per-pixel visibility function from light point-of-view

• Typically used to render volumetric shadows

• Developed by Pixar for off-line rendering, require unbounded memory

*Salvi et al. “Adaptive Volumetric ShadowMaps”. Computer Graphics Forum (Proceedings of EGSR 2010), vol. 29(4), pp. 1289-1296, June 2010.

Advances in Real-Time Rendering in Games course17

Deep Shadow Maps

• DSMs encode per-pixel visibility function from light point-of-view

• Typically used to render volumetric shadows

• Developed by Pixar for off-line rendering, require unbounded memory

• Adaptive Volumetric Shadow Maps*

• Like DSMs but designed for real-time rendering

• Lossy compression of the visibility data

*Salvi et al. “Adaptive Volumetric ShadowMaps”. Computer Graphics Forum (Proceedings of EGSR 2010), vol. 29(4), pp. 1289-1296, June 2010.

Advances in Real-Time Rendering in Games course17

Deep Shadow Maps

• DSMs encode per-pixel visibility function from light point-of-view

• Typically used to render volumetric shadows

• Developed by Pixar for off-line rendering, require unbounded memory

• Adaptive Volumetric Shadow Maps*

• Like DSMs but designed for real-time rendering

• Lossy compression of the visibility data

• Pixel synchronization enables first fixed memory implementation of AVSM

• Demo

*Salvi et al. “Adaptive Volumetric ShadowMaps”. Computer Graphics Forum (Proceedings of EGSR 2010), vol. 29(4), pp. 1289-1296, June 2010.

Advances in Real-Time Rendering in Games course17

Voxelization

• Build complex per-voxel data structures on the GPU at voxelization time

• e.g. direction-dependent representations (anisotropic voxels, etc.)

Advances in Real-Time Rendering in Games course18

Voxelization

• Build complex per-voxel data structures on the GPU at voxelization time

• e.g. direction-dependent representations (anisotropic voxels, etc.)

• Voxelization via 2D rasterization projects triangles to XY, YZ or XZ plane

• But global atomic ops are slow and pose significant restrictions on struct size, type, etc.

Advances in Real-Time Rendering in Games course18

Voxelization

• Build complex per-voxel data structures on the GPU at voxelization time

• e.g. direction-dependent representations (anisotropic voxels, etc.)

• Voxelization via 2D rasterization projects triangles to XY, YZ or XZ plane

• But global atomic ops are slow and pose significant restrictions on struct size, type, etc.

• Use pixel synchronization to build 3D data structures at voxelization time

• Problem: fragment dependencies cannot be tracked over multiple 2D planes

Advances in Real-Time Rendering in Games course18

Voxelization

• Build complex per-voxel data structures on the GPU at voxelization time

• e.g. direction-dependent representations (anisotropic voxels, etc.)

• Voxelization via 2D rasterization projects triangles to XY, YZ or XZ plane

• But global atomic ops are slow and pose significant restrictions on struct size, type, etc.

• Use pixel synchronization to build 3D data structures at voxelization time

• Problem: fragment dependencies cannot be tracked over multiple 2D planes

• Easy fix: voxelize onto one 2D plane at time

• 3 draw calls per mesh, one per 2D plane (i.e. reject triangles that map to other planes)

• Number of generated voxels doesn’t change & more flexible than using global atomics

Advances in Real-Time Rendering in Games course18

Advanced Anti-Aliasing

• Use pixel synchronization to improve or replace multi-sampling anti-aliasing

• Higher image quality vs. lower memory requirements vs. better performance

Advances in Real-Time Rendering in Games course19

Advanced Anti-Aliasing

• Use pixel synchronization to improve or replace multi-sampling anti-aliasing

• Higher image quality vs. lower memory requirements vs. better performance

• Z³ anti-aliasing* (1999)

• Originally developed as HW based high-quality anti-aliasing algorithm

• Store N fragment per pixel (z, ∂z/∂x, ∂z/∂y, color, coverage)

• Merge fragments (lossy)

*Jouppi et al. “Z³: an economical hardware technique for high-quality antialiasing and transparency”.Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware

Advances in Real-Time Rendering in Games course19

Advanced Anti-Aliasing

• Use pixel synchronization to improve or replace multi-sampling anti-aliasing

• Higher image quality vs. lower memory requirements vs. better performance

• Z³ anti-aliasing* (1999)

• Originally developed as HW based high-quality anti-aliasing algorithm

• Store N fragment per pixel (z, ∂z/∂x, ∂z/∂y, color, coverage)

• Merge fragments (lossy)

• Analytic methods

• Render scene using conservative rasterization

• Build per-pixel spatial subdivision structure using primitive edges (per-pixel BSP?)

• Compute fragment weights from fraction of pixel area covered by leaf cells and resolve

*Jouppi et al. “Z³: an economical hardware technique for high-quality antialiasing and transparency”.Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware

Advances in Real-Time Rendering in Games course19

Performance Tips & Tricks

• Don’t clear large buffers. Clear a small buffer and use it as a clear mask.

Advances in Real-Time Rendering in Games course20

Performance Tips & Tricks

• Don’t clear large buffers. Clear a small buffer and use it as a clear mask.

bool clear = gClearMask[xy];

Read clear mask

Advances in Real-Time Rendering in Games course20

Performance Tips & Tricks

• Don’t clear large buffers. Clear a small buffer and use it as a clear mask.

bool clear = gClearMask[xy];

if (clear) {

gClearMask[xy] = false;

myLargeStruct = ...

Read clear mask

Mark pixel as “used” and
initialize large struct

Advances in Real-Time Rendering in Games course20

Performance Tips & Tricks

• Don’t clear large buffers. Clear a small buffer and use it as a clear mask.

bool clear = gClearMask[xy];

if (clear) {

gClearMask[xy] = false;

myLargeStruct = ...

} else {

myLargeStruct = gLargeDataStruct[xy];

...

}

Read clear mask

Mark pixel as “used” and
initialize large struct

If pixel is not in clear
state load large struct

and update it

Advances in Real-Time Rendering in Games course20

Performance Tips & Tricks

• Don’t clear large buffers. Clear a small buffer and use it as a clear mask.

bool clear = gClearMask[xy];

if (clear) {

gClearMask[xy] = false;

myLargeStruct = ...

} else {

myLargeStruct = gLargeDataStruct[xy];

...

}

gLargeDataStruct[xy] = myStruct;

Read clear mask

Mark pixel as “used” and
initialize large struct

If pixel is not in clear
state load large struct

and update it Write large struct data
back to memory

Advances in Real-Time Rendering in Games course20

Performance Tips & Tricks

• Don’t clear large buffers. Clear a small buffer and use it as a clear mask.

bool clear = gClearMask[xy];

if (clear) {

gClearMask[xy] = false;

myLargeStruct = ...

} else {

myLargeStruct = gLargeDataStruct[xy];

...

}

gLargeDataStruct[xy] = myStruct;

Read clear mask

Mark pixel as “used” and
initialize large struct

If pixel is not in clear
state load large struct

and update it Write large struct data
back to memory

Clear this!

Advances in Real-Time Rendering in Games course20

Performance Tips & Tricks

• Don’t clear large buffers. Clear a small buffer and use it as a clear mask.

bool clear = gClearMask[xy];

if (clear) {

gClearMask[xy] = false;

myLargeStruct = ...

} else {

myLargeStruct = gLargeDataStruct[xy];

...

}

gLargeDataStruct[xy] = myStruct;

Read clear mask

Mark pixel as “used” and
initialize large struct

If pixel is not in clear
state load large struct

and update it Write large struct data
back to memory

Clear this!

Not this!
Advances in Real-Time Rendering in Games course20

Performance Tips & Tricks

• Small(er) data structures can improve performance

• Use more instructions to pack/unpack data

• Balance data structure size and amount of packing/unpacking code

Advances in Real-Time Rendering in Games course21

Performance Tips & Tricks

• Small(er) data structures can improve performance

• Use more instructions to pack/unpack data

• Balance data structure size and amount of packing/unpacking code

• Address 1D structured buffers as tiled to better data exploit locality

• e.g. 1x2 or 2x2 (2D textures), 2x2x2 (voxels), etc..

Advances in Real-Time Rendering in Games course21

Performance Tips & Tricks

• Small(er) data structures can improve performance

• Use more instructions to pack/unpack data

• Balance data structure size and amount of packing/unpacking code

• Address 1D structured buffers as tiled to better data exploit locality

• e.g. 1x2 or 2x2 (2D textures), 2x2x2 (voxels), etc..

• Prefer inserting the synchronization point in the second half of the shader

• Increase likelihood of concurrently shading fragments that map to the same pixel

• Corollary: use HW z-test when possible for better performance (Hi-Z is fast!)

Advances in Real-Time Rendering in Games course21

Summary

• Programmable shading revolutionized real-time rendering

• ..but the revolution did not include the tail of the pipeline

Advances in Real-Time Rendering in Games course22

Summary

• Programmable shading revolutionized real-time rendering

• ..but the revolution did not include the tail of the pipeline

• Pixel synchronization is a new tool that injects new life in the 3D pipeline

Advances in Real-Time Rendering in Games course22

Summary

• Programmable shading revolutionized real-time rendering

• ..but the revolution did not include the tail of the pipeline

• Pixel synchronization is a new tool that injects new life in the 3D pipeline

1. Pick the per-pixel data structure that can better solve your rendering problem

Advances in Real-Time Rendering in Games course22

Summary

• Programmable shading revolutionized real-time rendering

• ..but the revolution did not include the tail of the pipeline

• Pixel synchronization is a new tool that injects new life in the 3D pipeline

1. Pick the per-pixel data structure that can better solve your rendering problem

2. Draw geometry to build your data in a streaming fashion

Advances in Real-Time Rendering in Games course22

Summary

• Programmable shading revolutionized real-time rendering

• ..but the revolution did not include the tail of the pipeline

• Pixel synchronization is a new tool that injects new life in the 3D pipeline

1. Pick the per-pixel data structure that can better solve your rendering problem

2. Draw geometry to build your data in a streaming fashion

3. Use the data & enjoy your results (sip tea or coffee)

Advances in Real-Time Rendering in Games course22

Summary

• Programmable shading revolutionized real-time rendering

• ..but the revolution did not include the tail of the pipeline

• Pixel synchronization is a new tool that injects new life in the 3D pipeline

1. Pick the per-pixel data structure that can better solve your rendering problem

2. Draw geometry to build your data in a streaming fashion

3. Use the data & enjoy your results (sip tea or coffee)

• DX11+ extension available now (download demos), OpenGL extension in

development.

Advances in Real-Time Rendering in Games course22

Q&A

• Acknowledgements
• The ART team

• Tom Piazza, Chuck Lingle, Tomasz Janczak , Prasoon Surti, Mike Dwyer, Andy Dayton, Mike Apodaca, Aaron Lefohn,
Larry Seiler, Leigh Davies, Filip Strugar, Matthew Fife, Steve Hughes, Axel Mamode, Richard Huddy and many others

• Source code
• Programmable Blending:

• Order-Independent Transparency:

• Adaptive Volumetric Shadow Maps:

• Contacts
• e-mail: marco.salvi@intel.com

• twitter: @marcosalvi

bit.ly/pixelsync_pb

bit.ly/pixelsync_oit

bit.ly/pixelsync_avsm

Advances in Real-Time Rendering in Games course23

