
1

2

3

Morphological:
Sub-pixel Morhpological Anti-Aliasing [Jimenez 11]
Fast AproXimatte Anti Aliasing [Lottes 09]

Analytical:
Geometric Buffer Anti Aliasing [Persson 11]
Distance to Edge Anti Aliasing [Malan 10]

Multi Sampled Anti Aliasing
Enhanced Quality Anti Aliasing

4

5

Morphological algorithm rely on rasterized pixel colour / geometric data changes. If
those changes do not get ‘rasterized’ AA will be incorrect.
In case of long moving edges, AA will result in wobble effect, where edge will get
correctly rasterized only at its unique rasterized positions.
All intermediate edge positions won’t have any effect on AA, unlike Analytical
methods.

6

Image courtesy [Persson 11]

7

Note: Performance hit can be negligible on platforms supporting Direct Vertex Access
in Pixel Shaders such as AMD GCN. See [Drobot 14]

8

Top: Visualization of distance to edge. Color encodes 1bit direction (X, Y). Signed
value encodes 4bit distance.
Middle: Result of 1x Centroid rasterization
Bottom: Result of analytical resolve.

9

Note perfectly anti aliased edge on right side. Middle section shows incorrectly AA
edge due to rasterization errors and subpixel triangles (where multiple triangle meet).

10

Image courtesy Real-Time Rendering, 3rd Edition, A K Peters 2008

11

Image courtesy [AMD 11]

12

Most GPUs are very well optimized for Coverage sampling, unless you want to
manually output coverage from Alpha Testing
AMD hardware allows manual access to Coverage pipeline intermediate buffers, thus
allowing us more complex resolves.

13

14

15

Samples 0 and 1 are anchored – have their own depth fragments for depth testing

16

BLUE triangle hits the ANCHORED SAMPLE 0 – BLUE is added to Color Fragments

17

Samples covered by BLUE triangle gets associated

18

Incoming Red Triangle clears sample 1 association

19

New color RED gets added to Fragment Color table. Sample 1 gets association with
RED color stored at Color Fragment 1.

20

Incoming Green Triangle will need to clear Sample 1 and 3 association and evict RED
or BLUE from Color Fragment Table

21

Arbitration rules:
During color eviction from Color Fragment table, Fragment with least priority is
removed.
Priority depends on Sample Count associated with Color.
If a tie occurs, lower index has higher priority.

22

GREEN gets added into Color Fragments, Samples 1 and 3 get new associations

23

Sample 3 is unanchored - it has no depth thus can’t be Z –tested.
To avoid color leakage it’s association must be discarded.

24

Sample 3 goes UNKNOWN

NOTE: it’s possible to ‘save’ sample 3 association. HW can execute accurate testing by
depth plane interpolation. If sample 3 would pass such test – would not be
overwritten by RED triangle depth – it’s association would not be touched.
This is only possible if Depth Buffer is stored in Compressed Format using Zplanes
[AMD GCN]
Otherwise it’s advised to use more anchor samples.

25

26

BLUE gets evicted. All samples associated with it will be set to UNKNOWN (including 2
not covered by RED triangle)

27

Sample 2 is left UNKNOWN

28

Simple setup that has low shading rate 1 shaded sample / pixel
Image reconstruction based on coverage data happens after lighting.

29

Specific case of 1Fragment FMask.
Every sample can only have two states, thus making sampling and recovering
information very easy.

30

1F xS sampling patterns should be handcrafted.
Sample 0 (depth / color) at center should behave better at reconstruction of sub-pixel
details.
Sample 0 at edges / corners should behave better at reconstruction of edges.
Better sampling patterns require more work.

31

32

33

34

We see it will end up not being rasterized – thus set Samples to UNKNOWN.
But maybe the neighbour Pixel will get rasterized?

35

GREEN triangle is large enough to get rasterized in pixel neighborhood. We add its
color GREEN to current pixel Neighborhood Fragments as UP neighbor.

36

37

38

We find a half plane dividing the pixel.
Could also use more expensive (at runtime) line fitting between two subsets of
samples.

39

Infer UNKNOWN sample colors from the other side of derived edge.

40

Top Left : Overview of complex AA scenario using 8xCRAA
Top Right : Line layout for a crop of a complex corner case with multiple triangles
intersecting one pixel
Bottom Left: 8xCRAA resolve results
Bottom Right: 8xMSAA resolve results

41

Note: 8xCRAA results are comparable with 8xMSAA apart from pixels that contain
multiple triangle intersections.
In that complex case, a single edge estimation can’t correctly resolve the edge.
Visible artifacts are similar to analytical methods.

42

43

In that case analytical would blend RED with BLUE

44

In that case analytical would blend RED with BLUE
We need to blend 3 RED with 2 GREEN and 3 BLUE
Only RED got rasterized in current pixel.
Fortunately BLUE and GREEN triangles were big enough to get rasterized in
neighborhood (assumption).

45

46

With CLUT we have proper blending of subpixel details

47

Samples 5 and 6 pull data from UP neighbor.
7, 4, 2 pull data from BOTTOM.

48

* You mileage may vary depending on HW, settings etc.

Note: It is still possible to get sub-pixel artifacts (similar to Analytical). However, the
chance is lower (still not practical with certain content or tessellation).

Correct Coverage resolve requires specific HW modes settings
Check your IHV
For AMD GCN

Compressed Depth Buffer
Depth Testing High Quality Intersections
Z sample interpolation
Front to Back sorting

49

Top to bottom:
- Edge layout
- 1x Centroid Rasterization result
- 8xCRAA (single edge resolve) – fails at pixels cut by multiple edges
- 8xCRAA LUT – correctly resolves pixels cut by multiple edges, assuming that all

triangles cutting the pixel will rasterize in immediate neighborhood.

50

Extension of method from Killzone Shadow Fall.
Only two unique frames are used for actual super-sampling.
Motion Flow constraint guarantees dis-occlusion correctness.
Color Flow constraint guarantees color data freshness as well as lack of jitter in
stationary position (this is a fail case for exponential buffer Super-sampling where
convergence is impossible to due to cumulative weight).

For similarity test use SAD or other neighborhood similarity metric.
Also SAD based operations are natively supported in HW on AMD GCN architecture
(as a part of HW video acceleration).
See SAD4ShaderInstructions Cap in DX11
See msad4 (hlsl)
GCN allows much more useful operations on packed 8bit values : variations of sad,
packed lerp…

51

52

Exponential history buffers are very convenient for image stabilization.
Unfortunately lack of possibility to remove a single sample from history, results in
lack of convergence for finite length patterns.
In effect there is a very hard to remove artifact or high contrast details fading in/out –
or ‘fizzing’

53

54

2xRG has 2 unique columns and 2 unique rows.

55

QUINCUNX optimizes the pattern by sharing corner samples with adjacent pixels.
It covers 3 unique rows and 3 unique columns, improving over 2xRG.
It adds a 0.5 radius blur (that is partially recoverable by 0.5 pixel unsharp mask
processing).

56

4xRG has 4 unique columns and 4 unique rows.

57

FLIPQUAD is a efficient 2 sample / pixel scheme that allows effective 4x Super-
sampling by sharing sampling points on pixel boundary edges.
It combines the benefits of QUINCUNX and Rotated Grid patterns.
Covers 4 unique rows and 4 unique columns, improving over 2xRG and QUINCUNX,
matching 4xRG
It adds a 0.5 radius blur (that is partially recoverable by 0.5 pixel unsharp mask
processing).

58

Image courtesy [Akenine 03]

59

Lower error estimate E -> closer to 1024 super-sampled reference.
Image courtesy [Laine 06]

60

61

Noise is always contained within a pixel quad, thus easy to filter.

62

Be default all texture coordinates will be interpolated at pixel center or centroid.
In case of our FLIPQUAD pattern we want to benefit from super-sampling, therefore
UV should be evaluated at sample positions to match the rasterization grid.
Use HLSL interplator modifier : sample

63

64

65

Due to grid quantization a value progression over time can be skewed.
Bilinear Sampling can be interpreted as semi-Lagrangian method (1st order). While
unconditionally stable, it oversmoothens the results.

66

67

One full projection step is cut in comparison to Mac Cormack.
Unfortunately final value requires memory access to: phi_n, phi_hat_n and
phi_hat_n+1

68

Projections from N to N+1 are quick to evaluate at shader execution time by UV
offsets.
Final value requires only access to phi_hat_hat_n+1 and phi_hat_n+1

Effectively this is equivalent to BFCEE in terms of steps, however memory
consumption and bandwidth is cut.

Note:
BFCEE  GPU BFCEE  MacCormack only for linear projection functions!

69

This is a result of Exponential History Buffer, resampled over 30 frames. Camera
movement speed varied, therefore this can be assumed as average case.
If the relative pixel speed on screen would be exactly 0.5 texel a frame (thus bilinear
resampling would always end up doing maximum blur), result would be much worse.

70

71

Frequency based acceptance metric
Operate on fresh data neighborhood (3x3 window)

History sample close to mean doesn’t bring new information
History sample further away brings more information
History sample too far might be a fluctuation

Local minima / maxima provide soft bounds for exponential weight function.

72

73

74

We are still on the fence with final method we will ship.
If we would live in perfect world with all content having perfect LODs , we would go
CRAA.
Otherwise SMAA + AEAA on Alpha Test (this makes the whole pass cheaper and more
stable on vegetation that is really important in our use case).

75

76

Note: Reconstruction capabilities of all TFQ based methods.

77

78

79

80

81

82

83

84

85

86

