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HRAA: Goals

Temporal Stability

High quality Edge Anti Aliasing
Super-sampling comparable to 4x RGSS
Shading cost of 1 sample / pixel

1080p resolution
Performance ~1ms on PS4 / X1




HRAA: Overview

» Temporarily Stable Edge Anti-aliasing
» Temporal Super-sampling
» Temporal Anti-aliasing




Temporarily Stable Edge AA

* Morphological
— SMAA, FXAA
Analytical Edge AA
— GBAA

— DEAA
MSAA / EGAA

Coverage Based
— CRAA

Morphological:
Sub-pixel Morhpological Anti-Aliasing [Jimenez 11]
Fast AproXimatte Anti Aliasing [Lottes 09]

Analytical:
Geometric Buffer Anti Aliasing [Persson 11]
Distance to Edge Anti Aliasing [Malan 10]

Multi Sampled Anti Aliasing
Enhanced Quality Anti Aliasing



Morphological

* Pros:
— Highest quality is static scenario
— Catch All behaviour
— Ease of integration

— Uses rasterized data




Morphological FRAME A

Morphological

* Cons: Morphological FRAME B
— Expensive

— Not temporarily stable
+ Wobbles under motion o ® Y ®

Analytical FRAME A

» Partially solved
— More expensive SMAAx4

Morphological algorithm rely on rasterized pixel colour / geometric data changes. If
those changes do not get ‘rasterized’ AA will be incorrect.

In case of long moving edges, AA will result in wobble effect, where edge will get
correctly rasterized only at its unique rasterized positions.

All intermediate edge positions won’t have any effect on AA, unlike Analytical
methods.



Analytical

* Pros:
— Highest edge quality an
— Temporarily Stable
— Great for Alpha Test (use signed distance fields)

— Fast
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Image courtesy [Persson 11]
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Note: Performance hit can be negligible on platforms supporting Direct Vertex Access
in Pixel Shaders such as AMD GCN. See [Drobot 14]



Top: Visualization of distance to edge. Color encodes 1bit direction (X, Y). Signed
value encodes 4bit distance.

Middle: Result of 1x Centroid rasterization
Bottom: Result of analytical resolve.




Note perfectly anti aliased edge on right side. Middle section shows incorrectly AA
edge due to rasterization errors and subpixel triangles (where multiple triangle meet).
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* Pros: 2 x| sample |e e
— Closest to ground truth

— Resolves sub-pixel issues Quincunx | @ _‘__ i

- Cons: 2% 2grid o1
— Very expensive

— Too prohibitive to reach 2 x 2 RGSS
Morphological quality level

4 x 4 checker

8 rooks

4 x 4 grid 3808

Image courtesy Real-Time Rendering, 3" Edition, A K Peters 2008



Coverage

* GPUs can decouple coverage samples from color/depth fragments

— MSAA aided by cheap coverage samples = EQAA

2x MSAA

2x EQAA

4 coverage samples

Image courtesy [AMD 11]

4x MSAA

4x EQAA

8 coverage samples

8x EQAA

16 coverage samples

Color Sample
Location

Coverage Sample
Location

Pixel Boundary
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Coverage Reconstruction AA

Use only coverage samples
— Minimal cost
Reconstruct final image from coverage

Requires hardware capable of direct Coverage samples access
Following presentation based on AMD GCN architecture

Most GPUs are very well optimized for Coverage sampling, unless you want to
manually output coverage from Alpha Testing

AMD hardware allows manual access to Coverage pipeline intermediate buffers, thus
allowing us more complex resolves.
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Basic concepts

* Fragments
— Rasterized values stored in memory
— Dictate Buffer Memory Footprint
— 1-8.in 2~N format

» Samples
— Rasterizer positions inside a pixel
— Set on Rasterizer State Vector
— 1-16 in 22N format
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Basic concepts : Association Buffers

* FMASK
— Fragment Compression Buffer associated with Color Buffer
— Stores association table hetween samples and color fragments

— For every pixel stores
» For every sample

— Bit index of associated fragment
- ([1,2,4,8,16 samplesl[1,2,4 bit for color index] + 1 hit for UNKNOWN) per pixel
* 4-sample/2-fragment=4 * 2 = 8 hit
» 8-sample/1-fragment=8 * 1 = 8 hit
* 16-sample/8-frag = 16 * 4 = 64 hit
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Example : Color/Depth : 2F 43

Color
Fragments

- Color / Depth

Samples 0 and 1 are anchored — have their own depth fragments for depth testing
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Example : Color/Depth : 2F 43

Color
Fragments

BLUE triangle hits the ANCHORED SAMPLE 0 — BLUE is added to Color Fragments
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Example : Color/Depth : 2F 43

Color
Fragments

B
]

Samples covered by BLUE triangle gets associated
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Example : Color/Depth : 2F 48

Color
Fragments Q
2 —
0

Incoming Red Triangle clears sample 1 association
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Example : Color/Depth : 2F 43

Color
Fragments

New color RED gets added to Fragment Color table. Sample 1 gets association with
RED color stored at Color Fragment 1.
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Example : Color/Depth : 2F 43

Color
Fragments

]

Incoming Green Triangle will need to clear Sample 1 and 3 association and evict RED
or BLUE from Color Fragment Table
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Example : Color/Depth : 2F 43

Color
Fragments

Arbitration rules:

During color eviction from Color Fragment table, Fragment with least priority is
removed.

Priority depends on Sample Count associated with Color.
If a tie occurs, lower index has higher priority.
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Example : Color/Depth : 2F 43

Color
Fragments

GREEN gets added into Color Fragments, Samples 1 and 3 get new associations
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Example : Color/Depth : 2F 48

Color
Fragments e
1 .
0

O

Sample 3 is unanchored - it has no depth thus can’t be Z —tested.
To avoid color leakage it’s association must be discarded.

24



Example : Color/Depth : 2F 43

Color
Fragments

B
0|

Sample 3 goes UNKNOWN

NOTE: it’s possible to ‘save’ sample 3 association. HW can execute accurate testing by
depth plane interpolation. If sample 3 would pass such test — would not be
overwritten by RED triangle depth — it’s association would not be touched.

This is only possible if Depth Buffer is stored in Compressed Format using Zplanes
[AMD GCN]

Otherwise it’s advised to use more anchor samples.
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Example : Color/Depth : 2F 48

Fragments

B
0|

FMASK

O

26



Example : Color/Depth : 2F 48

Color
Fragments

2
Dl 2

FMASK
2

3
: O
1
0

BLUE gets evicted. All samples associated with it will be set to UNKNOWN (including 2
not covered by RED triangle)
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Example : Color/Depth : 2F 43

Color
Fragments

1l
&l

Sample 2 is left UNKNOWN
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CRAA Setup

* MRT Setup
— Color / Depth 1F xS

* Pipeline

— Ghuffer Render
— Lighting
— CRAA Resolve

Simple setup that has low shading rate 1 shaded sample / pixel
Image reconstruction based on coverage data happens after lighting.
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CRAA

FMASK : 1F xS

— 8 hit
- Xe{l1,2,4,68}
16 bit
+ Xe{16}

Bitwise

» 0 - Fragment written to color buffer was ,hit’ by sample

* 1 - UNKNOWN - sample is associated with other Color Fragment
Immediately know Color Fragment ,coverage’

(X - Counthits(FMASKIpixell)) / X
Can we infer associations of UNKNOWN samples?

Specific case of 1Fragment FMask.
Every sample can only have two states, thus making sampling and recovering
information very easy.
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8xCRAA: Example

Color
Fragments  FMASK

1F xS sampling patterns should be handcrafted.
Sample 0 (depth / color) at center should behave better at reconstruction of sub-pixel

details.
Sample 0 at edges / corners should behave better at reconstruction of edges.

Better sampling patterns require more work.
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8xCRAA: Example

Color
Fragments  FMASK




8xCRAA: Example

Color
Fragments  FMASK




8xCRAA: Example

Color
Fragments  FMASK




8xCRAA: Example

Color
Fragments  FMASK

We see it will end up not being rasterized — thus set Samples to UNKNOWN.

But maybe the neighbour Pixel will get rasterized?
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8xCRAA: Example

Color
Fragments  FMASK

Neighbour
Fragments

U

B
L
R

GREEN triangle is large enough to get rasterized in pixel neighborhood. We add its
color GREEN to current pixel Neighborhood Fragments as UP neighbor.
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8xCRAA: Example FMASK

FMASK : 00010110
X=8
RED Coverage = CountBits(000101107) /8 = 5/8

UNKNOWN
— Infer them from neighbourhood
— We know every Sample position
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8xCRAA: Simple Resolve

For every UNKNOWN sample
— GetSamplePosition
— Treat Sample Pos as vector
— Add together

Sum defines an approximate equation of half plane dividing the pixel
— Calculate Half Plane direction : Vertical / Horizontal
— Calculate Half Plane slope
— From Direction and Slope Infer UNKNOWN fragment

» Up/Bottom
 Left/Right

Resolved Pixel = Color Fragment * Coverage + (1-Coverage) * Inferred Fragment
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8xCRAA: Simple Resolve

Color
Fragments  FMASK

Neighbour
Fragments

U

B
L
R

We find a half plane dividing the pixel.

Could also use more expensive (at runtime) line fitting between two subsets of
samples.

39



8xCRAA: Simple Resolve

Color
Fragments  FMASK

Neighbour
Fragments

U

B
L
R

Infer UNKNOWN sample colors from the other side of derived edge.
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8xCRAA 8xMSAA

Top Left : Overview of complex AA scenario using 8xCRAA

Top Right : Line layout for a crop of a complex corner case with multiple triangles
intersecting one pixel

Bottom Left: 8xCRAA resolve results
Bottom Right: 8xMSAA resolve results
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8xCRAA 8xMSAA

Note: 8xCRAA results are comparable with 8xMSAA apart from pixels that contain
multiple triangle intersections.

In that complex case, a single edge estimation can’t correctly resolve the edge.
Visible artifacts are similar to analytical methods.
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8xCRAA LUT

What about subpixel artifacts?
Can we eliminate them?
Can we get rid of ALU to be only BW bound?

Solution

Precompute an LUT to store neighbouring pixel weights
— Use full neighborhood
— Multiple edges / triangles crossing the pixel
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8xCRAA LUTS Example

Color
Fragments  FMASK

Dl E

Neighbour
Fragments

U

B
L
R

In that case analytical would blend RED with BLUE
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8xCRAA LUT : Example

Color
Fragments  FMASK

Neighbour
Fragments

In that case analytical would blend RED with BLUE

We need to blend 3 RED with 2 GREEN and 3 BLUE

Only RED got rasterized in current pixel.

Fortunately BLUE and GREEN triangles were big enough to get rasterized in
neighborhood (assumption).
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8XCRAA LUT : In Practice

» CLUT[256]
— Every entry stores weights for UP, BOTTOM, LEFT, RIGHT neighbour sample
— Weights are 4BIT — as maximum coverage can be 16
— LUT is indexed directly by FMASK bhit pattern

» CLUT for 8S is 512bytes : 256 * 4 * 4
— Fits Texture Cache Lines
— Once primed lookups are for ,free’

* For Every FMASK entry
— Precompute Optimal Neighbourhood Blending Scheme
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8xCRAA LUT : Example

Color
Fragments  FMASK CLUTIO1101111]

Neighbour
Fragments

With CLUT we have proper blending of subpixel details
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8xCRAA LUT : Example

Color
Fragments  FMASK CLUTIO1101111]

Neighbour
Fragments

Samples 5 and 6 pull data from UP neighbor.
7, 4, 2 pull data from BOTTOM.
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8XCRAA LUT : In Practice

Fast resolve

— Neighborhood prefetch
— FMask read

— LUT[FMask] read

— Blend

Minimal overhead of coverage sampling*

Non sub-pixel triangle quality equal to 8xXMSAA

— Correct resolve assuming all triangles cutting the pixel will rasterize in immediate
neighborhood

AA triangle intersections

Sub-pixel quality varies
— Better than Analytical methods based on single traingle

* You mileage may vary depending on HW, settings etc.

Note: It is still possible to get sub-pixel artifacts (similar to Analytical). However, the
chance is lower (still not practical with certain content or tessellation).

Correct Coverage resolve requires specific HW modes settings
Check your IHV
For AMD GCN

Compressed Depth Buffer

Depth Testing High Quality Intersections

Z sample interpolation

Front to Back sorting
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}XCRAA

IXCRAA LUT

Top to bottom:

- Edge layout

- 1x Centroid Rasterization result

- 8xCRAA (single edge resolve) — fails at pixels cut by multiple edges

- 8xCRAA LUT — correctly resolves pixels cut by multiple edges, assuming that all
triangles cutting the pixel will rasterize in immediate neighborhood.
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Temporal Super Sampling

Based on Killzone: Shadow Fall [Valient14]
Use current and previous frame (2 samples)
N-1 Sample is valid only if:
— Motion flow between frame N and N-1 is coherent

— Color flow between frames N and N-2 is coherent
+ (note N-2 and N have same sub-pixel jitter)

Tests use 3x3 neighborhood

Sum of Absolute Differences
— For performance reasons => smaller window =>more conservative

Extension of method from Killzone Shadow Fall.

Only two unique frames are used for actual super-sampling.

Motion Flow constraint guarantees dis-occlusion correctness.

Color Flow constraint guarantees color data freshness as well as lack of jitter in
stationary position (this is a fail case for exponential buffer Super-sampling where
convergence is impossible to due to cumulative weight).

For similarity test use SAD or other neighborhood similarity metric.

Also SAD based operations are natively supported in HW on AMD GCN architecture
(as a part of HW video acceleration).

See SAD4Shaderinstructions Cap in DX11

See msad4 (hlsl)

GCN allows much more useful operations on packed 8bit values : variations of sad,
packed lerp...
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Temporal Super Sampling

» If N-1 sample fails Geometric Metric
— Interpolate from N
 [f N-1 sample fails Color Metric
— Limit N-1 sample by N color bounding box

— Improves stability
— Brings in some new information
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Temporal Super Sampling

» Use exponential history buffer for stabilization
— Not robust enough for real sample accumulation

— Convergence impossible
+ Visual artifacts

» Maximize incoming information through advanced sampling patterns

Exponential history buffers are very convenient for image stabilization.

Unfortunately lack of possibility to remove a single sample from history, results in
lack of convergence for finite length patterns.

In effect there is a very hard to remove artifact or high contrast details fading in/out —
or ‘fizzing’
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Sampling Patterns : 1x Centroid




Sampling Patterns : 2x Rotated Grid

2XRG has 2 unique columns and 2 unique rows.
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QUINCUNX optimizes the pattern by sharing corner samples with adjacent pixels.
It covers 3 unique rows and 3 unique columns, improving over 2xRG.

It adds a 0.5 radius blur (that is partially recoverable by 0.5 pixel unsharp mask
processing).
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Sumplmg Putterns dx Rotated Grid

4xRG has 4 unique columns and 4 unique rows.
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Sampling Patterns : 2x FLIPQUAD

FLIPQUAD is a efficient 2 sample / pixel scheme that allows effective 4x Super-
sampling by sharing sampling points on pixel boundary edges.

It combines the benefits of QUINCUNX and Rotated Grid patterns.

Covers 4 unique rows and 4 unique columns, improving over 2xRG and QUINCUNX,
matching 4xRG

It adds a 0.5 radius blur (that is partially recoverable by 0.5 pixel unsharp mask
processing).
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Sampling Patterns : Comparison

FLIPQUAD

Image courtesy [Akenine 03]
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FLIPQUAD: In Practice

» [AMD 13] AMD_framebuffer_sample_positions
» 2xMSAA - easy setup
 Significantly higher quality than QUINCUNX at same cost

>1.0

0.698

2x2 Rotated Grid 0.439
 Quincunx  IOGE
FLIPQUAD 0.364

Lower error estimate E -> closer to 1024 super-sampled reference.

Image courtesy [Laine 06]
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Temporal FLIPQUAD

Split the pattern in half

Frame A (BLUE) renders on part Frame B
(RED) second

Needs custom per pixel within quad

resolve

— Convenient blend on X or Y axis
depending on frame

PixelO = avg(BLUE(O,1), RED(0,2))
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Temporal FLIPQUAD: In Practice

Filterable Noise in rasterization

T
e

Noise is always contained within a pixel quad, thus easy to filter.
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Temporal FLIPQUAD: In Practice

» UVs need to be interpolated at SAMPLE positions for super-sampling

— Use HLSL interpolator modifiers
* sample float2 UV;

* Not normalized spatial distances between rasterization samples => wrong
derivative calculation

» Mip map selection needs special care:
— tex2Dgrad with analytical gradients
— Adjust sample order to minimize temporal changes of distances

Be default all texture coordinates will be interpolated at pixel center or centroid.

In case of our FLIPQUAD pattern we want to benefit from super-sampling, therefore
UV should be evaluated at sample positions to match the rasterization grid.

Use HLSL interplator modifier : sample
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Frame A — Correct Mip
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Frame B — Correct Mip (changed sample order)
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Higher Order Resampling

Reprojection = resampling problem

Non-fraction offsets result in numerical diffusion
Makes a difference even in simple resampling
Especially evident in history buffers

— Error accumulates over time

Due to grid quantization a value progression over time can be skewed.
Bilinear Sampling can be interpreted as semi-Lagrangian method (1t order). While
unconditionally stable, it oversmoothens the results.
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2" Order Resampling: Mac Cormack

Mac Cormack Scheme

1 — project value into future N+1
2 - reproject back into N

— Reprojected value has double accumulated
error of projection method used

3 — correct value by half accumulated error
4 — project corrected value into N+1
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2" Order Resampling : BFCEE

Back Forth Error Correction & Compensation

1 — project value into future N+1
2 - reproject back into N

— Reprojected value has double accumulated
error of projection method used

3 - correct projected value by half
accumulated error

One full projection step is cut in comparison to Mac Cormack.
Unfortunately final value requires memory access to: phi_n, phi_hat_nand
phi_hat_n+1

68



2" Order Resampling: GPU BFCEE

GPU Optimized BFCEE

1 — project value into future N+1

2 - reproject back into N

— Reprojected value has double accumulated
error of projection method used

3 - project reprojected value into N+1
— Triple accumulated error
4 - correct projected value by half

accumulated error between projected and
double projected value

Projections from N to N+1 are quick to evaluate at shader execution time by UV

offsets.
Final value requires only access to phi_hat_hat_n+1 and phi_hat_n+1

Effectively this is equivalent to BFCEE in terms of steps, however memory
consumption and bandwidth is cut.

Note:
BFCEE < GPU BFCEE <~ MacCormack only for linear projection functions!
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Bilinear : Continuous resampling30 frame Shader BFECC: Continuous resampling30 frame

This is a result of Exponential History Buffer, resampled over 30 frames. Camera
movement speed varied, therefore this can be assumed as average case.

If the relative pixel speed on screen would be exactly 0.5 texel a frame (thus bilinear
resampling would always end up doing maximum blur), result would be much worse.
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Temporal Anti Aliasing

History exponential buffer
Amortize sudden visual changes (flicker)
Accumulate as much new ‘important’ data as possible

Use frequency based acceptance metric

Operate on fresh data neighborhood (3x3 window)
— History sample close to mean doesn’t bring new information
— History sample further away brings more information
— History sample too far might be a fluctuation

Use local minima / maxima for soft bounds
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Frequency based acceptance metric
Operate on fresh data neighborhood (3x3 window)

History sample close to mean doesn’t bring new information
History sample further away brings more information
History sample too far might be a fluctuation

Local minima / maxima provide soft bounds for exponential weight function.
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HRAA: Final Implementation

Temporarily Stable Edge Anti-aliasing
— SMAA (Normal + Depth + Luma Predicated Thresholding)
— CRAA
— AEAA (GBAA)

Temporal FLIPQUAD Reconstruction combined with Temporal Anti-aliasing (TAA)
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Temporarily Stable

Frame N Edge Anti-aliasing

Accumulation
History Buffer

FLIPQUAD
Reconstruction
&
Temporal Anti-
aliasing

Stable Super-
sampled Frame
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HRAA: FCA Final Implementation

» Temporarily Stable Edge Anti-aliasing
— Non obvious choice

» SMAA + AEAA on Alpha Test
— Most reliable, reasonable performance

* CRAA + AEAA on Alpha Test
— Best performance, some content issues

We are still on the fence with final method we will ship.

If we would live in perfect world with all content having perfect LODs , we would go
CRAA.

Otherwise SMAA + AEAA on Alpha Test (this makes the whole pass cheaper and more
stable on vegetation that is really important in our use case).
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TFA+ TFa+ TFA+
AEAA CRAA SMAA

Note: Reconstruction capabilities of all TFQ based methods.
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__ SinglePass | Timing(ms) | GBuffer Overhead (%)

BFECC Single Value
Temporal FLIPQUAD (TFQ)

TAA

TFQ + TAA

AEAA(Alpha Test) + 8xCRAA
+ TFQ + TAA

SMAA + TFQ + TAA

0.3
0.2
0.25
0.25
0.9
0.6
0.62

0.9

1.4

N/A
N/A
<1%C
<8% HW/C
N/A
N/A
N/A

<3% HW/C
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HRAA: Hi Frequency Recovery

FLIPQUAD BOX resolve kernel
— Results in 0.5 blur
— Art direction ‘might’ find it objectionable

In real super-sampling a wider, complex kernel would be needed to preserve:
— Anti-alias
— Hi-Frequency

Check [Burley 07]

W) -

“mitchell-4:0 (ShadingRate 1.0) == “mitchell4:0 ¢
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HRAA: Hi Frequency Recovery

» A simple one negative lobe kernel can be de-convoluted into
— Box Blur (FLIPQUAD resolve) — 0.5 pixel radius
— Unsharp masking — 0.5 pixel radius

» “Arguably” reconstruct detail
— Will not introduce aliasing as long as it is inside window of re-construcion blur kernel
— All information is still in various image frequencies
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(oversharpened for effect)
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HRAA: Summary

Temporarily Stable
Comparable to 4x RGSS
Cut to fit your needs
Fast

Doesn't solve all problems — sub-pixel content still problematic
Provides some new ideas and solutions to your AA toolbox

Requires more work in the future
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D&A

More details, samples and pictures
in upcoming GPU Pro 6 article
GO grab it March 2015
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