
Advances in Realtime Rendering

Learning from failure:
A Survey of Promising, Unconventional and Mostly Abandoned Renderers for ‘Dreams PS4’,

a Geometrically Dense, Painterly UGC Game

Alex Evans
MediaMolecule

@mmalex

1Advances in Realtime Rendering

(suggested listening: I was listening to https://soundcloud.com/futureastronauts/transmission011-sora-guest-mix on a loop while I wrote this, so if you want to get into
the mood…)

story time!

===========

this talk is about showing you some of the approaches that we tried and failed to make stick for our project. if you're looking for something to take away, hopefully it
could be inspiration or some points are places to start, where we left off. I also just think it's interesting to hear about failures, and the lessons learnt along the way. it's a
classic story of the random walk of R&D…

2

spoiler section!

================

this is where we're headed if you didnt see it at e3 {e3 trailer}

https://www.youtube.com/watch?v=4j8Wp-sx5K0

Engine 1: Anton’s Blob Editor

3Advances in Realtime Rendering

back to the beginning

=====================

it all began with @antonalog doing an experiment with move controllers, and a DX11 based marching cubes implementation.

4Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

here he is! this was on PC, using playstation move controllers. the idea was to record a series of add & subtraction using platonic shapes with simple distance field
functions

http://dreams.mediamolecule.com

5Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

we use (R to L) cubic strokes, cylinders, cones, cuboids, ellipsoids, triangular prisms, donuts, biscuits, markoids*, pyramids.

(markoids are named for our own mark z who loves them; they’re super ellipsoids with variable power for x,y,z)

http://dreams.mediamolecule.com

6Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

here’s the field for the primitives…

http://dreams.mediamolecule.com

7Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

we called each primitive an 'edit',

we support a simple list, not tree of CSG edits.

and models are made up of anything from 1 to 100,000 edits

 with add, subtract or ‘color’ only, along with…

http://dreams.mediamolecule.com

8Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

soft blend, which is effectively soft-max and soft-min functions.

http://dreams.mediamolecule.com

9Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

here’s the field for the hard blend.

http://dreams.mediamolecule.com

10Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

and the soft. I’ll talk more about the function for this in a bit. note how nicely defined and distance-like it is, everywhere!

http://dreams.mediamolecule.com

11Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

[timelapse of dad’s head, with randomised colours] he’s 8,274 edits.

(an side: MM artists Kareem, Jon B and Francis spent a LONG time developing artistic techniques like the ‘chiselled’ look you see above, with half made early versions of this tech. It’s
their artistry which convinced us to carry on down this path. It can’t be understated how important it is when making new kinds of tools, to actually try to use them in order to improve
them. Thanks guys!). Anyway:

the compound SDF function , was stored in 83^3 fp16 volume texture blocks, incrementally updated as new edits arrived. each block was independently meshed using marching cubes
on the compute shader; at the time this was a pretty advanecd use of CS(as evidenced by frequent compiler bugs/driver crashes) - many of the problems stemmed from issues with
generating index buffers dynamically on the GPU. the tech was based on histopyramids, which is a stream compaction technique where you count the number of verts/indices each cell
needs, iteratively halve the resolution building cumulative 'summed area' tables, then push the totals back up to full resolution, which gives you a nice way to lookup for each cell where in
the target VB/IB its verts should go. there's lots of material online, just google it.

http://dreams.mediamolecule.com

12Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

the core idea of lists of simple SDF elements, is still how all sculptures are made in dreams, and is the longest living threads. this was the opposite of a failure! it was our
first pillar in the game. Anton worked with Kareem, our art director, to get some pretty cool gestural UI going too; there's minimal UI intrusion so artists can get into flow
state. I think he was planning to implement classic z-brush style pull/smear/bend modifications of the field - which is probably what some of you may have thought we
did first- but luckily he didn't. Why? welllll...........

http://dreams.mediamolecule.com

Advances in Realtime Rendering

Animation test time!

13

some early animation tests were done around this time to see what could be achieved - whether with purely with semi- or fully rigid pieces, or some other technique. the
results were varied in quality and all over the place in art style - we didn't know what we wanted to do, or what was possible; so we imagined lots of futures:

14

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

rigid-ish pieces (low resolution FFD deformer over rigid pieces):

http://dreams.mediamolecule.com

Advances in Realtime Rendering

…VS…

15

competing with that was the idea of animating the edits themselves. the results were quite compelling -

16Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

this was an offline render using 3DS Max’s blob mode to emulate soft blends. but it shows the effect.

http://dreams.mediamolecule.com

17Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

this was in Anton’s PC prototype, re-evaluating and re-meshing every frame in realtime.

http://dreams.mediamolecule.com

Jan Svankmajer

18Advances in Realtime Rendering

and there was a visual high bar, which everyone loved, inspired by the work of legendary claymation animator & film maker jan svankmajer

19
Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

here we made stop motion by scrubbing through the edit history, time lapse style (just like the earlier dad’s head). and on a more complex head model… pretty expensive
to re-evaluate every frame though!

http://dreams.mediamolecule.com

Advances in Realtime Rendering

‘Oh F….’

20

however to achieve this, the SDF would need to be re-evaluated every frame. in the first pc prototype, we had effectively added each edit one at a time to a volume
texture - it was great for incremental edits, but terrible for loading and animation. the goal of dreams is for UGC to be minimal size to download, so we can't store the
SDF fields themselves anyway - we need a fast evaluator!

a first plan for a pipeline…

21Advances in Realtime Rendering

Nevertheless, a plan was forming! the idea was this

{'csg' edit list => CS of doom => per object voxels => meshing? => per object poly model =>

 scene graph

render! profit!

 Before getting to rendering, I'd like to talk about the CS of doom, or evaluator as we call it. The full pipeline from edit list to renderable data is 40+ compute shaders in
a long pipeline, but the “CS of doom” are a few 3000+ instruction shaders chained together that make the sparse SDF output. fun to debug on early PS4 hardware!

here are some actual stats on dispatch counts for the a model called crystal’s dad to be converted from an edit list to a point cloud and a filtered brick tree:

eval dispatch count: 60

sweep dispatch count: 91

points dispatch count: 459

bricker dispatch count: 73

22Advances in Realtime Rendering

We had limited the set of edits to exclude domain deformation or any non-local effects like blur (much to the chagrin of z-brush experienced artists), and our CSG trees
were entirely right leaning, meaning they were a simple list. Simple is good!

 so in *theory* we had an embarrassingly parallel problem on our hands. take a large list of 100k edits, evaluate them at every point in a ~1000^3 grid, mesh the result,
voila! one object!

23Advances in Realtime Rendering

alas, that's 100 billion evaluations, which is too many.

24Advances in Realtime Rendering

anton wrote the first hierarchical prototype, which consisted of starting with a very coarse voxel grid, say 4x4x4

{slide}

25Advances in Realtime Rendering

building a list of edits that could possibly overlap each voxel, and then iteratively refining the voxels by splitting them and shortening the lists for each.

26Advances in Realtime Rendering

empty cells and full cells are marked early in the tree; cells near the boundary are split recursively to a resolution limit. (the diagram shows a split in 2x2, but we actually
split by 4x4x4 in one go, which fits GCN’s 64 wide wavefronts and lets us make coherent scalar branches on primitive type etc)

the decision to split a given cell and when not to, is really tricky. if you err on the ‘too little split’ side, you get gaps in the model. most of the renderering backends we
were trying required at least 1 to 1.5 voxels of valid data on each side of the mesh.

if you err on the ‘too much split’ side, you can easily get pathological cases where the evaluator ends up doing orders of magnitude too much work.

Also, the splits must be completely seamless.

The quality constraints are much, much more stringent than what you’d need for something like sphere tracing.

Both Anton and I had a crack at various heuristic evaluators, but neither was perfect. And it was made worse by the fact that even some of our base primitives, were
pretty hard to compute ‘good’ distances for!

27Advances in Realtime Rendering

an aside on norms. everyone defaults to the L2 distance (ie x^2+y^2+z^2) because it’s the length we’re used to.

28Advances in Realtime Rendering

the L2 norm for boxes and spheres is easy. but the ellipsoid… not so much. Most of the public attempts at ‘closest point on an ellipsoid’ are either slow, unstable in
corner cases, or both. Anton spent a LONG time advancing the state of the art, but it was a hard, hard battle.

Ellipsoid: https://www.shadertoy.com/view/ldsGWX

Spline: https://www.shadertoy.com/view/XssGWl

29Advances in Realtime Rendering

luckily, anton noticed that for many primitives, the max norm was simpler and faster to evaluate.

Insight from "Efficient Max-Norm Distance Computation and Reliable Voxelization" http://gamma.cs.unc.edu/RECONS/maxnorm.pdf

-Many non-uniform primitives have much simpler distance fields under max norm, usually just have to solve some quadratics!

- Need to be careful when changing basis as max norm is not rotation-invariant, but a valid distance field is just a scaling factor away

So evaluator works in max norm i.e. d = max(|x|,|y|,|z|). The shape of something distance ‘d’ away from a central origin in max norm is a cube, which nicely matches the
shape of nodes in our hierarchy. :)

30

soft_min(a,b,r) {
float e=max(r-abs(a,b),0);
return min(a,b)-e*e*0.25f/r;

}

Importantly: equals
hard min after distance r

Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

Soft blend breaks ALL THE CULLING, key points:

- Soft min/max needs to revert to hard min/max once distance fields are sufficiently far apart (otherwise you can never cull either side)

- Ours is for some radius r: soft_min(a, b, r) { float e = max(r - abs(a - b), 0); return min(a, b) - e*e*0.25/r; }, credit to Dave Smith @ media molecule

- Has no effect once abs(a - b) > r

- Need to consider the amount of ‘future soft blend’ when culling, as soft blend increases the range at which primitives can influence the final surface (skipping over lots
of implementation details!)

- Because our distance fields are good quality, we can use interval arithmetic for additional culling (skipping over lots of implementation details!)

http://dreams.mediamolecule.com

31Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

this is a visualisation of the number of edits affecting each voxel; you can see that the soft blend increases the work over a quite large area. however, compared to the
earlier, less rigorous evaluators, simon’s interval-arithmetic and careful-maxnorm-bounds was a tour-de-force of maths/engineering/long dependent compute shader
chains/compiler bug battling.

http://dreams.mediamolecule.com

Simon ‘I break compilers’ FTW

32Advances in Realtime Rendering

thanks for saving the evaluator sjb!

33

Filename ElementCount BlockCount BlockEvalCount VoxelCount EvaluatorTime ClusterCount BrickCount Time Per Prim Per
Block

Culling
Efficiency

crystals_dad 8274 235286 1879414 5241466 0.09109472 11190 5497 0.00000004847 99.90%

big_mech 850 156759 292582 4119346 0.01510454 8651 5741 0.00000005163 99.78%

sphere_woman 24407 36625 6995798 848194 0.3423158 1408 694 0.00000004893 99.22%

hoverbot7b 604 168234 349221 4317399 0.01616372 8411 5187 0.00000004629 99.66%

whirlwind 791 410945 763795 10411468 0.0344279 19222 10431 0.00000004507 99.77%

head_lion 53976 182451 4148168 4676180 0.2271382 10555 5866 0.00000005476 99.96%

hatching 736 68793 143484 1729905 0.009373858 3939 4446 0.00000006533 99.72%

dots 1480 149988 190265 3816626 0.01703693 6241 4436 0.00000008954 99.91%

bolt_lock 1830 41936 1302908 1018246 0.02170936 2298 1216 0.00000001666 98.30%

motel_final 610 373423 752668 9214195 0.03267893 17606 6882 0.00000004342 99.67%

derek_glamour_hea
d8

3824 266152 5906261 6997031 0.1903296 12668 5052 0.00000003223 99.42%

Dan-OldDudeHat 907 146283 1235569 3923554 0.04069558 7159 3606 0.00000003294 99.07%

head40 22484 96477 1593633 2464223 0.1425964 5087 2571 0.00000008948 99.93%

Advances in Realtime Rendering

STATS! for some test models, you can see a range of edits (‘elements’) from 600 - 53000 (the worst is around 120k, but thats atypical); this evaluates to between 1m and
10m surface voxels (+-1.5 of surface),

34Advances in Realtime Rendering

… the culling rates compared to brute force are well over 99%. we get 10m - 100m voxels evaluated per second on a ps4, from a model with tens of thousands of edits.

cry

35Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

this is one of those models… (crystals dad, 8274 edits, 5.2m voxels)

http://dreams.mediamolecule.com

36Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

…and this is a visualisation of the number of edits that touch the leaf voxels

http://dreams.mediamolecule.com

37Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

http://dreams.mediamolecule.com

38Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

moar (head40) (22k edits, 2.4m voxels)

note the colouring is per block, so the voxel res is much higher than the apparent color res in this debug view

http://dreams.mediamolecule.com

Advances in Realtime Rendering

Rendering attempt 1 - polys
aka…

39

the meshes output from the blob prototype, as it was called, were generally quite dense - 2m quads at least for a large sphere, and more as the thing got more crinkly. In
addition, we wanted to render scenes consisting of, at very least, a 'cloud' of rigidly oriented blob-meshes. at this point anton and I started investigating different
approaches. anton looked into adaptive variants of marching cubes, such as dual marching cubes, various octree schemes, and so on. let's call this engine - including
the original histopyramids marching cubes, engine 1: the polygon edition.

Advances in Realtime Rendering

Cultural Learnings For Make Benefit
Glorious Polygonalization of Signed

Distance Fields
by Anton Kirczenow

40

here are some notes from the man himself about the investigations SDF polygonalization

41Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

Marching cubes: Well it works but the meshes are dense and the edges are mushy and there are slivers and the output makes for asymmetrical code in a GPU
implementation.

http://dreams.mediamolecule.com

42Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

I dont know if you can tell but that’s the wireframe! oh no

http://dreams.mediamolecule.com

43

Dual Contouring of Hermite Data
Ju, Losasso, Schaefer and Warren

Advances in Realtime Rendering

Dual Contouring: Hey this is easy on GPU. Oh but it’s kind of hard to keep sharp edges sharp and smooth things smooth and it doesn’t really align to features for edge
flow either.

http://www.frankpetterson.com/publications/dualcontour/dualcontour.pdf

‘Dual Contouring of Hermite Data’

Ju, Losasso, Schaefer and Warren

44Advances in Realtime Rendering

note the wiggly edge on the bottom left of the cuboid - really hard to tune the hard/soft heuristics when making animated deathstars.

45Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

more complex model….

http://dreams.mediamolecule.com

46Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

the DC mesh is still quite dense in this version, but at least it preserves edges. however it shows problems: most obviously, holes in the rotor due to errors in the
evaluator we used at this stage (heuristic culling -> makes mistakes on soft blend; pre simon eval!) - also occasionally what should be a straight edge ends up wobbly
because it cant decide if this should be smooth or straight. VERY tricky to tune in the general case for UGC.

http://dreams.mediamolecule.com

47

Intersection-free Contouring on An Octree Grid
Tao Ju, Tushar Udeshi

Advances in Realtime Rendering

ALSO! Oh no, there are self intersections! This makes the lighting look glitched - fix em:

http://www.cs.wustl.edu/~taoju/research/interfree_paper_final.pdf

‘Intersection-free Contouring on An Octree Grid’

Tao Ju, Tushar Udeshi

48

Manifold Dual Contouring
Scott Schaefer, Tao Ju, Joe Warren

Advances in Realtime Rendering

Oh no, now it’s not necessarily manifold, fix that.

http://faculty.cs.tamu.edu/schaefer/research/dualsimp_tvcg.pdf

Manifold Dual Contouring

Scott Schaefer, Tao Ju, Joe Warren

Advances in Realtime Rendering

ARGH!
Manifold? Non-Self-Intersecting?

Pick one :(

49

Oh no, it’s self intersecting again. Maybe marching cubes wasn’t so bad after all... and LOD is still hard (many completely impractical papers).

Advances in Realtime Rendering

Aside: GCN ds_ordered_count FTW
deterministic append buffers we <3 u

50

the ability to accumulate to an ‘append buffer’ via DS_ORDERED_COUNT *where the results are magically in deterministic order based on wavefront dispatch index* is …
magical and wonderful feature of GCN. it turns this…

51Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

(non deterministic vertex/index order on output from a mesher, cache thrashing hell:)

http://dreams.mediamolecule.com

52Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

into this - hilbert ordered dual contouring! so much better on your (vertex) caches.

we use ordered append in a few places. it’s a nice tool to know exists!

http://dreams.mediamolecule.com

53Advances in Realtime Rendering

back to the story! the answer to Isla’s question is,

Advances in Realtime Rendering

No, Isla, I do not.
(they are amazing as a surface rep! but… they’re surprisingly hard.

I don’t like hard. I run away and return to bitmaps pictures…)

54

no, I do not like polygons.

I mean, they *are* actually pretty much the best representation of a hard 2D surface embedded in 3D, especially when you consider all the transistors and brain cells
dedicated to them.

but… they are also very hard to get right automatically (without a human artist in the loop), and make my head hurt. My safe place is voxels and grids and filterable
representations. Plus, I have a real thing for noise, grain, ‘texture’ (in the non texture-mapping sense), and I loved the idea of a high resolution volumetric representation
being at the heart of dreams. it’s what we are evaluating, after all. why not try rendering it directly? what could possibly go wrong?

so while anton was researching DC/MC/…, I was investigating alternatives.

55Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

there was something about the artefacts of marching cubes meshes that bugged me. I really loved the detailed sculpts, where polys were down to a single pixel -

and the lower res / adaptive res stuff struggled in some key cases.

so, I started looking into... other techniques.

http://dreams.mediamolecule.com

Inspiration: Volumetric Billboards

56

Philippe Decaudin, Fabrice Neyret

Advances in Realtime Rendering

since the beginning of the project, I had been obsessed by this paper:

http://phildec.users.sourceforge.net/Research/VolumetricBillboards.php

by Philippe Decaudin, Fabrice Neyret. it's the spiritual precursor to gigavoxels, SVOs, and their even more recent work on prefiltered voxels. I became convinced around
this time that there was huge visual differentiation to be had, in having a renderer based not on hard surfaces, but on clouds of prefiltered, possibly gassy looking,
models. and our SDF based evaluator, interpreting the distances around 0 as opacities, seemed perfect.

this paper still makes me excited looking at it. look at the geometric density, the soft anti-aliased look, the prefiltered LODs. it all fitted!

http://phildec.users.sourceforge.net/index.php
http://www-evasion.imag.fr/%7EFabrice.Neyret/

57Advances in Realtime Rendering

the paper contributed a simple LOD filtering scheme

{lod images}

based on compositing 'over' along each axis in turn, and taking the highest opacity of the three cardinal directions. this is the spiritual precursor to 'anisotropic' voxels
used in SVO. I love seeing the lineage of ideas in published work. ANYWAY.

58

Overly complex->

Advances in Realtime Rendering

the rendering was simple too: you take each rigid object, slice it screen-aligned along exponentially spaced z slices, and composite front to back or back to front. it's a
scatter-based, painters algorithm style volume renderer. they exploit the rasterizer to handle sparse scenes with overlapping objects. they also are pre-filtered and can
handle transparent & volumetric effects. this is quite rare - unique? - among published techniques. it’s tantalising. I think a great looking game could be made using this
technique.

{slice image}

I have a small contribution - they spend a lot of the paper talking about a complex Geometry shader to clip the slices to the relevant object bounds. I wish it was still 2008
so I could go back in time and tell them you don’t need it! ;) well, complex GS sucks. so even though I’m 7 years late I’m going to tell you anyway ;)

59

(Volumetric Billboards but simpler)
Advances in Realtime Rendering

to slice an object bounded by this cube…

60Advances in Realtime Rendering

pick the object axis closest to the view direction, and consider the 4 edges of the cube along this axis.

61Advances in Realtime Rendering

generate the slices as simple quads with the corners constrained to these 4 edges,

62Advances in Realtime Rendering

some parts of the slice quads will fall outside the box. that’s what the GS was there for! but with this setup, we can use existing HW:

63Advances in Realtime Rendering

 just enable two user clipping planes for the front and back of the object. the hardware clipping unit does all the hard work for you.

Gigavoxels <3

64

Cyril Crassin, Fabrice Neyret

Advances in Realtime Rendering

ANYWAY. this idea of volumetric billboards stuck with me. and I still love it.

fast forward a few years, and the french were once again rocking it.

http://maverick.inria.fr/Members/Cyril.Crassin/

Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre (note: neyret is the secondary author on VBs) had put out gigavoxels.

this is the next precursor to SVOs. seen through the lens of the earlier VB work, I loved that it kept that pre-filtered look, the geometric density from having a densely
sampled field. it layered on top a heirachical, sparse representation - matching very well the structure of our evaluator. hooray!

however it dispensed with the large number of overlapping objects, which makes it less immediately applicable to Dreams/games. but…

I did implement a quick version of gigavoxels, here are some shots.

65Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

its impossible to resist domain repetition when you’re just raytracing a field…

http://dreams.mediamolecule.com

66Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

add some lighting as per my earlier siggraph advances talk (2006 was it?), the sort of thing that has since been massively refined e.g. in the shadertoy community
(sampling mip mapped/blurred copies of the distance field - a natural operation in gigavoxel land, and effectively cone tracing)

I think it has a lovely alabaster look.

however it focussed on a single large field that (eye) rays were traced through, and I needed the kind of scene complexity of the earlier VB paper - a cloud of rigid voxels
models.

http://dreams.mediamolecule.com

Advances in Realtime Rendering

Engine 2: The brick engine
i.e. Let’s try a hybrid Volumetric Billboards / Gigavoxels approach!

67

the idea is to take the brick tree from gigavoxels, but instead of marching rays from the eye, directly choose a ‘cut’ through the tree of bricks based on view distance (to
get nice LOD), then rasterise each brick individually. The pixel shader then only has to trace rays from the edge of the bricks to any surface.

As an added advantage, the bricks are stored in an atlas, but there is no virtual-texturing style indirection needed in the inner loop (as it is in gigavoxels), because each
rastered cube explicitly bounds each individual brick, so we know which bit of the atlas to fetch from at VS level.

68Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

here you can see the individual cubes that the VS/PS is shading. each represents an 8x8x8 little block of volume data, giga-voxels style. again: rather than tracing eye
rays for the whole screen, we do a hybrid scatter/gather: the rasteriser scatters pixels in roughly the right places (note also that the LOD has been adapted so that the
cubes are of constant screen space size, ie lower LOD cut of the brick tree is chosen in the distance) then the Pixelshader walks from the surface of the cubes to the SDF
surface.

also, I could move the vertices of the cubes around using traditional vertex skinning techniqes, to get animation and deformation... oh my god its going to be amazing!

http://dreams.mediamolecule.com

69Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

(sorry for the bad screenshot - I suck at archiving my work)

It sort of amounts to POM/tiny raymarch inside each 8x8x8 cube, to find the local surface. with odepth to set the zbuffer.

it has the virtue of being very simple to implement.

http://dreams.mediamolecule.com

70Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

Because of that simplicity, This technique actually ended up being the main engine a lot of the artists used for a couple of years; you’ll see a couple more shots later. so
while the ‘bricks’ engine as it was known, went into heavy use, I really wanted more.

http://dreams.mediamolecule.com

71

OIT? something?

Advances in Realtime Rendering

I wasn’t happy! why not? I also wanted to keep that pre-filtered look from Volumetric Billboards. I felt that if we pursued just hard z buffered surfaces, we might as well
just do polys, or at least, the means didn’t lead to a visual result that was different enough. so I started a long journey into OIT.

72Advances in Realtime Rendering

I immediately found that slicing every cube into 8-16 tiny slices, ie pure 'VB', was going to burn way too much fill rate.

so I tried a hybrid where: when the PS marched the 8x8x8 bricks, I had it output a list of fuzzy ‘partial alpha’ voxels, as well as outputting z when it hit full opacity. then all
I had to do was composite the gigantic (10s of millions) of accumulated fuzzy samples onto the screen… in depth sorted order. hmm

73Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

so it was 'just' a matter of figuring out how to composite all the non-solid voxels. I had various ground truth images, and I was particularly excited about objects
overlapping each other with really creamy falloff - e.g. between the blue arch and the grey arch - thats just the two overlapping and the ‘fuzz’ around them smoothly
cross-intersecting.

http://dreams.mediamolecule.com

74

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

and pre filtering is great for good LOD! this visualizes the pre-filtered mips of dad’s head, where I’ve added a random beard to him as actual geometry in the SDF.

http://dreams.mediamolecule.com

75

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

and here’s what it looks like rendered.

http://dreams.mediamolecule.com

76Advances in Realtime Rendering

but getting from the too-slow ground truth to something consistently fast-enough was very, very hard. prefiltering is beautiful, but it generates a lot of fuzz, everywhere.

the sheer number of non-opaque pixels was getting high - easily 32x 1080p

I spent over a year trying everything - per pixel atomic bubble sort, front k approximations, depth peeling.. one thing I didn’t try because I didn’t think of it and it hadn't
been published yet, was McGuire style approximate commutative OIT. however it wont work in its vanilla form - it turns out the particular case of a very 'tight' fuzz around
objects is very unforgiving of artefacts - for example, if adjacent pixels in space or time made different approximations (eg discarded or merged different layers), you get
really objectionable visible artefacts.

77Advances in Realtime Rendering

it's even worse because the depth complexity changes drastically over 2 orders of magnitude between pixels that hit a hard back and 'edge on' pixels that spend literally
hundred of voxels skating through fuzz. this is morally the same problem that a lot of sphere tracing approaches have, where edge pixels are waaaay harder than surface
pixels. (cf shadertoy). I did have some interesting CS load balancing experiments, based on wavefronts peeling off 8 layers at a time, and re-circulating pixels for extra
passes that needed it -

{peeling images}

a kind of compute shader depth peel but with load balancing its goal.

78Advances in Realtime Rendering

here’s a simpler case. fine when your sort/merge algo has enough layers. but if we limit it to fewer blended voxels than necessary…

79Advances in Realtime Rendering

I couldn’t avoid ugly artefacts.

in the end, the 'hard' no-fuzz/no-oit shader was what went over the fence to the designers, who proceeded to work with dreams with a 'hard' look while I flailed in OIT
land.

Advances in Realtime Rendering

ARGH 2
Polygons? too difficult

Volumetric Billboards? too much filtrate
Gigavoxels? single object

Hybrid with rasterised gigavoxel cubes? too hard to render OIT overlaps

All is not well :(

80

see what I mean about failure?

and this is over the period of about 2 years, at this point

Advances in Realtime Rendering

Engine attempt 3:
Refinement renderer

aka ‘Let’s try again’

81

I think this is a really cool technique, its another one we discarded but I think it has some legs for some other project.

I call it the refinement renderer.

82

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

there are very few screenshots of this as it didn't live long, but its interestingly odd. have this sort of image in your mind for the next few slides. note the lovely pre-filtered
AA, the soft direct lighting (shadows but no shadow maps!). but this one is pure compute, no rasterised mini cubes.

the idea is to go back to the gigavoxels approach of tracing eye rays through fuzz directly... but find a way to make it work for scenes made out of a large number of
independently moving objects. I think if you squint a bit this technique shares some elements in common with what Daniel Wright is going to present in the context of
shadows; however since this focuses on primary-ray rendering, I'm not going to steal any of his thunder! phew.

http://dreams.mediamolecule.com

aside: Froxels

• { alex diagram of froxels }

83Advances in Realtime Rendering

a bit of terminology - we call post projection voxels - that is, little pieces of view frustum- 'froxels' as opposed to square voxels. The term originated at the sony WWS
ATG group, I believe.

if you look at a ray marcher like many of the ones on shadertoy , like iq's famous cloud renderer, you can think of the ray steps as stepping through 'froxels'.

84

https://www.shadertoy.com/view/XslGRr - clouds by iq
Advances in Realtime Rendering

https://www.shadertoy.com/view/XslGRr - clouds by iq

typically you want to step the ray exponentially so that you spend less time sampling in the distance.

intuitively you want to have 'as square as possible' voxels, that is, your step size should be proportional to the inverse of the projected side length, which is 1/1/z, or z. so
you can integrate and you get slices spaced as t=exp(A*i) for some constant A (slice index i), or alternatively write it iteratively as t+=K*t at each step for some constant K.

https://www.shadertoy.com/view/XslGRr

85Advances in Realtime Rendering

the only problem with this is that near the eye, as t goes to 0, you get infinitely small froxel slices. oh dear. if you look at iq's cloud example, you see this line:

86

t += max(0.1,0.02*t);

(aka, linear steps near the camera,
exponential steps further away)

Advances in Realtime Rendering

t += max(0.1,0.02*t);

which is basically saying, let's have even slicing up close then switch to exponential after a while.

I've seen this empirically used a few times. here's an interesting (?) insight. what would real life do? they dont have pinhole cameras.

87

t += max(0.1,0.02*t);

Advances in Realtime Rendering

so, consider a thin lens DOF model for a second. what if you tuned your froxel sampling rate not just for projected pixel size, but for projected bokeh size. the projected
bokeh radius is proportional to (z-f)/z, so we want A(z-f)/z + 1/z where A is the size in pixels of your bokeh at infinity. (the +1/z is the size of single ‘sharp’ pixel, i.e. the
footprint of your AA filter)

if you put this together, you can actually compute two exponential slicing rates - one for in front of the focal plane, and one for behind. at the focal plane, it's the same
step rate you would have used before, but in the distance it's a little sparser, and near to the camera it's WAY faster. extra amusingly, if you work through the maths, if
you set A to be 1 pixel, then the constant in the 'foreground' exponential goes to 0 and it turns out that linear slicing is exactly what you want. so the empirical 'even step
size' that iq uses, is exactly justified if you had a thin lens camera model with aperture such that bokeh-at-infinity is 1pixel across on top of your AA. neat! for a wider
aperture, you can step faster than linear.

Hierarchical all the things

88Advances in Realtime Rendering

ANYWAY.

how does this relate to rendering lots of objects?

the idea I had was to borrow from the way the evaluator works. you start by dividing your frustum into coarse froxels. I chose 64th res, that is about 32x16 in x and y, with
32-64 in z depending on the far z and the DOF aperture. (blurrier dof = fewer slices needed, as in previous slides).

then you do a simple frustum vs object intersection test, and build a list per froxel of which objects touch it.

{pic}

89Advances in Realtime Rendering

then, you recursively subdivide your froxels! for each froxel, in a compute shader you split them into 8 children. as soon as your froxel size matches the size of gigavoxel
prefiltered voxels, you sample the sparse octree of the object (instead of just using OBBs) to futher cull your lists.

90Advances in Realtime Rendering

as you get finer and finer, the lists get shorter as the object's shape is more accurately represented. it’s exactly like the evaluator, except this time we have whole objects
stored as gigavoxel trees of bricks (instead of platonic SDF elements in the evaluator), we don't support soft blend, and our domain is over froxels, not voxels.

91Advances in Realtime Rendering

for the first few steps, I split every froxel in parallel using dense 3d volume textures to store pointers into flat tables of per froxel lists.

however at the step that refines from 1/16th res to 8th res (128x64x128 -> 256x128x256) the dense pointer roots get too expensive so I switch to a 2d representation,
where every pixel has a single list of objects, sorted by z. the nice thing is that everything is already sorted coming out of the dense version, so this is really just gluing
together a bunch of small lists into one long list per screen pixel.

each refine step is still conceptually splitting froxels into 8, but each pixel is processed by one thread, serially, front to back.

that also means you can truncate the list when you get to solid - perfect, hierarchical occlusion culling!.

SHOW ME THE PICTURES! OK

the results were pretty

92Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

and the pre-filtered look is really special.

Look how yummy the overlap of the meshes is! Really soft, and there’s no ‘post’ AA there. It’s all prefiltered.

so I did a bit of work on lighting; a kind of 3d extension of my siggraph 2006 advances talk.

http://dreams.mediamolecule.com

Lighting the Refine
renderer

93Advances in Realtime Rendering

imagine this setup. this is basically going to be like LPV with a voxelized scene, except we use froxels instead of voxels, and we propagate one light at a time in such a
way that we can smear light from one side of the frustum to another in a single frame, with nice quality soft shadows. ‘LPV for direct lights, with good shadows’, if you
will.

94Advances in Realtime Rendering

imagine a single channel dense froxel grid at low resolution, I think I used 256x128x256 with 8 bits per froxel. We will have one of those for the ‘density’ of the scene -
defined everywhere inside the camera frustum. - As a side effect of the refinement process I write that ‘density’ volume out, more or less for free. Now we are also going
to have one extra volume texture for each ‘hero’ light. (I did tests with 4 lights).

STOP PRESS - as far as I can tell from the brilliant morning session by frostbite guys, they have a better idea than the technique I present on the next few slides. They
start from the same place -a dense froxel map of ‘density’, as above, but they resample it for each light into a per light 32^3 volume, in light-space. then they can smear
density directly in light space. This is better than what I do over the next few slides, I think. See their talk for more!

95Advances in Realtime Rendering

To wipe the light around, you set the single froxel where the light is to ‘1’ and kick a compute shader in 4 froxel thick ‘shells’ radiating out from that central light froxel.
(with a sync between each shell). Each thread is a froxel in the shell, and reads (up to) 4 trilinear taps from the density volume, effectively a short raycast towards the light.
Each shell reads from the last shell, so it’s sort of a ‘wipe’ through the whole frustum.

96Advances in Realtime Rendering

here come the shells! each one reads from the last. yes, there are stalls. no, they’re not too bad as you can do 4 lights and pipeline it all.

97Advances in Realtime Rendering

98Advances in Realtime Rendering

The repeated feedback causes a pleasant blur in the propagated shadows.

it’s like LPV propagation, except that it’s for a single light so you have no direction confusion, and you can wipe from one side of the screen to the other with a frame,
since you process the froxels strictly in order radiating out from the light.

You can jitter the short rays to simulate area lights. You do 4 lights at once, to overlap the syncs, and you do it on an async pipe to mop up space on your compute units
so the syncs don’t actually hurt that much. (offscreen lights are very painful to do well and the resolution is brutally low). However the results were pretty, and the ‘lighting’
became simple coherent volume texture lookups.

PICS PLZ:

99Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

Look ma! no shadowmaps!

would be super cool for participating media stuff, since we also have the brightness of every light conveniently stored at every froxel in the scene. I didn't implement it
though….

http://dreams.mediamolecule.com

100Advances in Realtime Rendering

Ambient occlusion was done by simply generating mip-maps of the density volume and sampling it at positions offset from the surface by the normal, ie a dumb very
wide cone trace.

The geometric detail and antialiasing was nice:

101Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

You could also get really nice subsurface effects by cone tracing the light volumes a little and turning down the N.L term:

http://dreams.mediamolecule.com

Advances in Realtime Rendering

BIG
SUCCESS!!?

102

Advances in Realtime Rendering

Nope.

103

However- the performance was about 4x lower than what I needed for PS4 (I forget the timings, but it was running at 30 for the scenes above ñ but only just! For more
complex scenes, it just died). The lighting technique and the refinement engine are separate ideas, but they both had too many limitations and performance problems
that I didn't have time to fix.

Advances in Realtime Rendering

it’s just too damn slow, by about 4x-10x depending on my optimism.
and there were lots of unsolved problems (offscreen lights, thin feature aliasing,…)

still, I think it’s a cool direction!

104

(ie I still think this technique has legs, but I can’t make it work for this particular game)

in particular, since edge pixels could still get unboundedly 'deep', the refinement lists were quite varied in length, I needed to jump through quite a few hoops to keep the
GPU well load balanced. I also should have deferred lighting a bit more - I lit at every leaf voxel, which was slow. however everything I tried to reduce (merge etc) led to
visible artefacts. what I didn’t try was anything stochastic. I had yet to fall in love with 'stochastic all the things'.... definitely an avenue to pursue.

We were also struggling with the memory for all the gigavoxel bricks.

Advances in Realtime Rendering

ARGH 3 (meltdown edition)
Polygons? too difficult

Volumetric Billboards? too much filtrate
Gigavoxels? single object

Hybrid with rasterised gigavoxel cubes? too hard to render OIT overlaps
Froxel Refinement volumetric render? too slow

AND THE GAME DOESNT EVEN LOOK THAT ‘DIFFERENT’ FROM POLYS

FML x 10000000 :(

105

The nail in the coffin was actually to do with art direction.

directly rendering the distance field sculptures was leaving very little to the imagination . So it was very hard to create ‘good looking’ sculptures; lots of designers were
creating content that basically looked like untextured unreal-engine, or ‘crap’ versions of what traditional poly engines would give you, but slower. It was quite a
depressing time because as you can see it’s a promising tech, but it was a tad too slow and not right for this project.

TL;DR:

this is the start of 2014. we’re 3 years in, and the engine prototypes have all been rejected, and the art director (rightly) doesn’t think the look of any of them suits the
game.

argh.

SO……..

Advances in Realtime Rendering 106Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

there was a real growing uneasiness in the studio. I had been working on OIT - refinement and sorting and etc for a LONG time; in the meantime, assets were being made
using the ‘hard’ variant of the bricks engine, that simply traced each 8x8x8 rasterised brick for the 0 crossing and output raw pixels which were forward lit. at its best, it
produced some lovely looking results (above) - but that was more the art than the engine! It also looked rather like ‘untextured poly engine’ - why were we paying all this
runtime cost (memory & time) to render bricks if they just gave us a poly look?

http://dreams.mediamolecule.com

Advances in Realtime Rendering 107

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

also, there was a growing disparity between what the art department - especially art director kareem and artist jon - were producing as reference/concept work. it was so
painterly!

there was one particular showdown with the art director, my great friend kareem, where he kept pointing at an actual oil painting and going 'I want it to look like this' and
I'd say 'everyone knows concept art looks like that but the game engine is a re-interpretation of that' and kareem was like 'no literally that'. it took HOURS for the penny
to drop, for me to overcome my prejudice.

http://dreams.mediamolecule.com

Advances in Realtime Rendering

So at the start of 2014…
we threw all the renderers away and started again.

(Let’s hope it works this time).

108Advances in Realtime Rendering

So after talking to the art director and hitting rock bottom in January 2014, he convinced me to go with a splat based engine, intentionally made to look like 3d paint
strokes. I have a strong dislike of ‘painterly post fx’ especially 2d ones, so I had resisted this direction for a looooooooooong time.

(btw this is building on the evaluator as the only thing that has survived all this upheaval)

Engine 4: the splats

109Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

I had to admit that for our particular application of UGC, it was *brutal* that you saw your exact sculpture crisply rendered, it was really hard to texture & model it using
just CSG shapes. (we could have changed the modelling primitives to include texturing or more noise type setups, but the sculpting UI was so loved that it was not
movable. The renderer on the other hand was pretty but too slow, so it got the axe instead).

So I went back to the output of the evaluator, poked simon a bit, and instead of using the gigavoxel style bricks, I got point clouds, and had a look at what I could do.

There’s a general lesson in here too - that tech direction and art direction work best when they are both considered, both given space to explore possibilities; but also
able to give different perspectives on the right (or wrong) path to take.

http://dreams.mediamolecule.com

110Advances in Realtime Rendering

So! now the plan is: generate a nice dense point cloud on the surface of our CSG sculpts.

EVERYTHING is going to be a point cloud. the SDF becomes an intermediate representation, we use it to spawn the points at evaluation time, (and also for collision. but
thats another talk)

we started from the output of the existing evaluator, which if you remember was hierarchically refining lists of primitives to get close to voxels on the surface of the SDF.
as it happens, the last refinement pass is dealing in 4x4x4 blocks of SDF to match GCN wavefronts of 64 threads.

111Advances in Realtime Rendering

We add one point to the cloud per leaf voxel (remember, thats about 900^3 domain, so for example, a sphere model will become a point cloud with diameter 900 and one
point per integer lattice cell that intersects the sphere surface)

actually we are using a dual grid IIRC so that we look at a 2x2x2 neighbourhood of SDF values and only add points where there is a zero crossing.

So now we have a nice fairly even, dense point cloud. Since the bounding voxel grid is up to around 900^3 voxels -> around 2 million surface voxels -> around 2 million
points.

112Advances in Realtime Rendering

The point cloud is sorted into Hilbert order (actually, 4^3 bricks of voxels are in Hilbert order and then the surface voxels inside those bricks are in raster order, but I
digress) and cut into clusters of approximately 256 points (occasionally there is a jump in the hilbert brick order so we support partially filled clusters, to keep their
bounding boxes tight).

113Advances in Realtime Rendering

Each cluster is tightly bounded in space, and we store for each a bounding box, normal bounds. then each point within the cluster is just one dword big, storing
bitpacked pos,normal,roughness, and colour in a DXT1 texture. All of which is to say, we now have a point cloud cut into lumps of 256 points with a kind of VQ
compression per point. We also compute completely independent cluster sets for each LOD - that is, we generate point clouds and their clusters for a ‘mip pyramid’
going from 900 voxels across, to 450, to 225, etc.

114Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

I can’t find many good screenshots but here’s an example of the density, turned down by a factor of 2x to see what’s going on.

my initial tests here were all PS/VS using the PS4 equivalent of glPoint. it wasn’t fast, but it showed the potential. I was using russian roulette to do 'perfect' stochastic
LOD, targeting a 1 splat to 1 screen pixel rate , or just under.

At this point we embraced TAA *bigtime* and went with ‘stochastic all the things, all the time!’. Our current frame, before TAA, is essentially verging on white noise. It’s
terrifying. But I digress!

http://dreams.mediamolecule.com

115Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

for rendering, we arranged the clusters for each model into a BVH. we also computed a separate point cloud, clustering and BVH for each mipmap (LOD) of the filtered
SDF. to smooth the LOD transitions, we use russian roulette to adapt the number of points in each cluster from 256 smoothly down to 25%, i.e. 256 down to 64 points
per cluster, then drop to the next LOD.

simon wrote some amazingly nicely balanced CS splatters that hierarchically culled and refined the precomputed clusters of points, computes bounds on the russian
roulette rates, and then packs reduced cluster sets into groups of ~64 splats.

so in this screenshot the color cycling you can see is visualizing the steps through the different degrees of decimation, from <25%, <50%, <75%, then switching to a
completely different power of 2 point cloud;

http://dreams.mediamolecule.com

116Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

What you see is the ‘tight’ end of our spectrum. i.e. the point clouds are dense enough that you see sub pixel splats everywhere. The artist can also ‘turn down’ the
density of points, at which point each point becomes a ‘seed’ for a traditional 2d textured quad splat. Giving you this sort of thing:

http://dreams.mediamolecule.com

117Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

http://dreams.mediamolecule.com

118Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

We use pure stochastic transparency, that is, we just randomly discard pixels based on the alpha of the splat, and let TAA sort it out. It works great in static scenes.
However the traditional ‘bounding box in color space’ to find valid history pixelsí starts breaking down horribly with stochastic alpha, and we have yet to fully solve that.
So we are still in fairly noisy/ghosty place. TODO!

We started by rendering the larger strokes - we call them megasplats - as flat quads with the rasterizer. thats what you see here, and in the E3 trailer.

http://dreams.mediamolecule.com

119Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

Interestingly , simon tried making a pure CS ‘splatting shader’, that takes the large splats, and instead of rasterizing a quad, we actually precompute a ‘mini point cloud’
for the splat texture, and blast it to the screen using atomics, just like the main point cloud when it’s in ‘microsplat’ (tight) mode.

http://dreams.mediamolecule.com

120

SO… a scene in Dreams is:

Advances in Realtime Rendering

So now we have a scene made up of a whole cloud of sculpts…

121Advances in Realtime Rendering

 which are point clouds,

122Advances in Realtime Rendering

and each point is itself, when it gets close enough to the camera, an (LOD adapted) ‘mini’ point cloud - Close up, these mini point clouds representing a single splat get
‘expanded’ to a few thousand points (conversely, In the distance or for ‘tight’ objects, the mini points clouds degenerate to single pixels).

Amusingly, the new CS based splatter beats the rasterizer due to not wasting time on all the alpha=0 pixels. That also means our ‘splats’ need not be planar any more,
however, we don’t yet have an art pipe for non-planar splats so for now the artists don’t know this! Wooahaha!

123Advances in Realtime Rendering

That means that if I were to describe what the current engine is, I’d say it’s a cloud of clouds of point clouds. :)

124Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

Incidentally, this atomic based approach means you can do some pretty insane things to get DOF like effects: instead of post blurring, this was a quick test where we
simply jittered the splats in a screenspace disc based on COC, and again let the TAA sort it all out.

It doesn’t quite look like blur, because it isn’t - its literally the objects exploding a little bit - but it’s cool and has none of the usual occlusion artefacts :)

We’ve left it in for now as our only DOF.

http://dreams.mediamolecule.com

rendering pipeline

• pic of it: edits ->eval-> point cloud clusters in BVH -> LOD cut
selection -> clusters splatted via atomics to 64 bit z+id buffer ->
gbuffer -> classic deferred lighting -> heavy TAA

125Advances in Realtime Rendering

I should at this point pause to give you a rough outline of the rendering pipe - it’s totally traditional and simple at the lighting end at least.

We start with 64 bit atomic min (== splat of single pixel point) for each point into 1080p buffer, using lots of subpixel jitter and stochastic alpha. There are a LOT of points
to be atomic-min’d! (10s of millions per frame) Then convert that from z+id into traditional 1080 gbuffer, with normal, albedo, roughness, and z. then deferred light that as
usual.

Then, hope that TAA can take all the noise away. ;)

126Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

I’m not going to go into loads of detail about this, since I don’t have time, but actually for now the lighting is pretty vanilla - deferred shading, cascaded shadow map sun.

there are a couple of things worth touching on though.

http://dreams.mediamolecule.com

127Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

ISMs: Now we are in loads-of-points land, we did the obvious thing and moved to imperfect shadow maps. We have 4 (3?) cascades for a hero sun light, that we atomic-
splat into and then sample pretty traditionally (however, we let the TAA sort out a LOT of the noise since we undersample and undersplat and generally do things quite
poorly)

We have a budget of 64 small (128x128) shadowmaps, which we distribute over the local lights in the scene, most of which the artists are tuning as spotlights. They are
brute force splatted and sampled, here were simonís first test, varying their distribution over an area light:

http://dreams.mediamolecule.com

128Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

these images were from our first test of using 64 small ISM lights, inspired by the original ISM paper and the ‘ManyLODs’ paper. the 3 images show spreading a number
of low quality lights out in an area above the object.

Imperfect Shadow Maps for Efficient Computation of Indirect Illumination

T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel, C. Dachsbacher, J. Kautz

 http://resources.mpi-inf.mpg.de/ImperfectShadowMaps/ISM.pdf

ManyLoDs http://perso.telecom-paristech.fr/~boubek/papers/ManyLoDs/

Parallel Many-View Level-of-Detail Selection for Real-Time Global Illumination

Matthias Holländer, Tobias Ritschel, Elmar Eisemann and Tamy Boubekeur

http://dreams.mediamolecule.com

129Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

I threw in solid-angle esque equi-angular sampling of participating media for the small local lights. See https://www.shadertoy.com/view/Xdf3zB for example
implementation. Just at 1080p with no culling and no speedups, just let TAA merge it. this one will DEFINITELY need some bilateral blur and be put into a separate layer,
but for now itís not:

http://dreams.mediamolecule.com

130Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

(just a visualisation classic paraboloid projection on the ISMs)

sorry for the quick programmer art, DEADLINES!

http://dreams.mediamolecule.com

131Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

this ‘vanilla’ approach to lighting worked surprisingly well for both the ‘tight’ end… (single pixel splats, which we call microsplats)… as well as

http://dreams.mediamolecule.com

132Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

…the loose end (‘megasplats’).

http://dreams.mediamolecule.com

133

It’s gonna
be OK…?

Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

this was the first time I got specular in the game! two layers of loose splats, the inner layer is tinted red to make it look like traditional oil underpainting. then the specular
hi lights from the environment map give a real sense of painterly look. this was the first image I made where I was like ‘ooooh maybe this isn't going to fail!’

http://dreams.mediamolecule.com

134Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

At this point you’ll notice we have painterly sky boxes. I wanted to do all the environment lighting from this. I tried to resurrect my previous LPV tests, then I tried
‘traditional’ Kapalanyan style SH stuff, but it was all too muddy and didn’t give me contact shadows nor did it give me ‘dark under the desk’ type occlusion range.

For a while we ran with SSAO only, which got us to here (point clouds give you opportunities to do ridiculous geometrical detail, lol)

http://dreams.mediamolecule.com

135Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

the SSAO we started with was based on Morgan McGuire’s awesome alchemy spiral style SSAO, but then I tried just picking a random ray direction from the cosine
weighted hemisphere above each point and tracing the z buffer, one ray per pixel (and let the TAA sort it out ;)) and that gave us more believable occlusion, less like dirt in
the creases.

From there it was a trivially small step to output either black (occluded) or sky colour (from envmap) and then do a 4x4 stratified dither. here it is without TAA (above).

However this is still just SSAO in the sense that the only occluder is the z buffer.

(random perf stat of the atomic_min splatter: this scene shows 28.2M point splats, which takes 4.38ms, so thats about 640 million single pixel splats per second)

http://dreams.mediamolecule.com

136Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

For longer range, I tried voxelizing the scene - since we have point clouds, it was fairly easy to generate a work list with LOD adapted to 4 world cascades, and atomic
OR each voxel - (visualised here, you can see the world space slices in the overlay) into a 1 bit per voxel dense cascaded volume texture

http://dreams.mediamolecule.com

137Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

then we hacked the AO shader to start with the z buffer, and then switch to the binary voxelization, moving through coarser and coarser cascades. it’s cone-tracing like,
in that I force it to drop to lower cascades (and larger steps), but all the fuzziness is from stochastic sampling rather than prefiltered mip maps. The effect is great for mid
range AO - on in the left half, off in the right.

That gets us to more or less where we are today, rough and noisy as hell but extremely simple.I really like the fact you get relatively well defined directional occlusion ,
which LPV just can’t give you due to excessive diffusion.

http://dreams.mediamolecule.com

138Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

(at this point we’re in WIP land! like, 2015 time!)

The last test, was to try adding a low resolution world space cascade that is RGB emissive, and then gather light as the sky occlusion rays are marched. The variance is
INSANELY high, so it isn’t usable, and this screenshot is WITH taa doing some temporal averaging! But it looks pretty cool. It might be enough for bounce light (rather
than direct light, as above), or for extremely large area sources. I don’t know yet. I’m day dreaming about maybe making the emissive volume lower frequency (-> lower
variance when gathered with such few samples) by smearing it around with LPV, or at least blurring it. but I haven’t had a chance to investigate.

http://dreams.mediamolecule.com

139Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

Oh wait I have! I just tried bilateral filtering and stratified sampling over 8x8 blocks, it does help a lot.

I think the general principle of z buffer for close, simple bitmask voxelization for further range gather occlusion is so simple that it’s worth a try in almost any engine. Our
voxel cascades are IIRC 64^3, and the smallest cascade covers most of the scene, so they’re sort of mine-craft sized voxels or just smaller at the finest scale. (then
blockier further out, for the coarser cascades). But the screenspace part captures occlusion nicely for smaller than voxel distances.

http://dreams.mediamolecule.com

140Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

another bilateral test pic. WIP ;)

http://dreams.mediamolecule.com

Advances in Realtime Rendering

breathe… nearly the end!

141Advances in Realtime Rendering

and that's pretty much where we are today!

as a palette cleanser, here’s some non-testbed, non-programmer art

142Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

http://dreams.mediamolecule.com

143Advances in Realtime Rendering

NB! Pre-production/concept/prototype artwork. Not representative of final game. see dreams.mediamolecule.com for more information.

http://dreams.mediamolecule.com

144

the end

Advances in Realtime Rendering

It feels like we're still in the middle of it all; we still have active areas of R&D; and as you can see, many avenues didn’t pan out for this particular game. But I hope that
you’ve found this journey to be inspiring in some small way. Go forth and render things in odd ways!

Thank you
• MM & SCE WWS for supporting this work and letting me share it

• Everyone at MM on the rendering and art side, especially Kareem (art director), Jon (a lot of
whom art I used without permission ;)); Simon and Anton, the rendering team who did much of
the code shown today. <3

• Natasha for inviting me (again)

• You for listening ;)

145Advances in Realtime Rendering

The artwork in this presentation is all the work of the brilliant art team at MediaMolecule. Kareem, Jon (E & B!), Francis, Radek to name the most prominent authors of the
images in this deck. But thanks all of MM too! Dreams is the product of at least 25 fevered minds at this point.

And of course @sjb3d and @antonalog who did most of the engine implementation, especially of the bits that actually weren’t thrown away :)

Any errors or omissions are entirely my own, with apologies.

if you have questions that fit in 140 chars I’ll do my best to answer at @mmalex.

