THE DEVILIS IN THE DETAILS

IDTECH 666

Tiago Sousa Jean Geffroy
Senior Engine Programmer

Render the Possibilities

SIGGRAPH2016 , “Bethesda @

Q

INitcial

= Performance: 60hz @ 1080p
= Speed up art workflow

= Multi-platform scalability
m KISS

= Minimalistic code

= No shader permutations insanity: ~100 shaders, ~350 pipe states

» Next Gen Visuals
= HDR, PBR

e0

uirements

= Dynamic and unified lighting, shadows and reflections

= (5ood anti-aliasing and VEX

Render the Possibilities

SIGGRAPH2016

P

Anatomy of a Frame

Frame Cost

Shadow Caching
Pre-Z

Opaque Forward Passes
= Prepare cluster data
= Textures composite, compute lighting
= (Qutput: L-Buffer, thin G-Buffer, feedback UAV

Deferred Passes
= Reflections, AQ, fog, final composite

Transparency
= Particles light caching, particles / VFX, glass

Post-Process (Async)

Render the Possibilities

SIGGRAPH2016 @

lata Structure for Lic

= A derivation from
= “Clustered Deferred and Forward Shading” ;g9
= "Practical Clustered Shading” (percon13]

= Just works ™

= Transparent surfaces
= No need for extra passes or work
= |ndependent from depth buffer
= No false positives across depth discontinuities
= More Just Works ™ in next slides

htiNg

&S

Nadinao

"1!\:

Olson12

Render the Possibilities

SIGGRAPH2016

o

A=

Daring

Clusterec
= Frustum shaped voxelization / rasterization process

= Done on CPU, 1 job per depth slice
= | pgarithmical depth distribution

!

Structure

R

= Extended near plane and far plane

» ZSlice = Near, X (

Far,

slice
)num slices
Near,

= \/oxelize each item

= An item can be: light, environment probe or a decal
= [tem shape is: OBB or a frustum (projector)

= Rasterization bounded by screen space min,, max,, and
depth bounds

Render the Possibilities

SIGGRAPH2016 fZ 2

&)

Preparing

Clustereco

Structure

!

T LU

= Hefinement done in clip space

{3

= A cell in clip space is an AABB
= N Planes vs cell AABB

= OBB is 6 planes, frustum is 5 planes

= Same code for all volumes
= SIMD

//Pseudo-code - 1 job per depth slice (if any item)

for (y = MinY; y < MaxY¥; ++y) {
for (x = MinX; x < MaxX; ++x) {
intersects =

N planes vs cell AABB
if (intersects) {

Register item

}

Render the Possibilities

SIGGRAPH2016 @

Preparing Clustered Structure

Structures

= (Offset list:
= 64 bits x Grid Dim X x Grid Dim Y x Grid Dim Z

= |tem list:
= 32 bits x 256 x Worst case (Grid Dim X x Avg Grid Dim Y x Grid Dim Z)

Offset List, per element
= Offset into item list, and light / decal / probe count
ltem List, per element
= 12 bits: Index into light list
= 12 bits: Index into decal list
= 8 bits: Index into probe list
Grid resolution is fairly low res: 16 x 8 x 24
= False positives: Early out mitigates + item list reads are uniform (GCN)

Render the Possibilities

SIGGRAPH2016 @

i i
PR
T

Clustered

I

umumin m

Structure

<0 § .
!

Hot{pdt: P
. ~300 light sources
~1 9k decals

cimer e wssudties

SIGGRAPH2016

&

Preparing Clustered Structure

Lighting Debug
Red = more’ t 1

Green = around 5

seties

SIGGRAPH2016 @

Detailing

Virtual-Texturing,q; updates

Albedo, Specular, Smoothness, Normals, HDR Lightmap

= H\W sRGB support

= Baked Toksvigq 1013 14; INtO SMoothness for specular anti-aliasing &

Feedback buffer UAV output directly to final resolution

Async compute transcoding

= Cost mostly irrelevant

Design flaws still present

= E.g. Reactive texture streaming = texture popping

ne VVWorlao

Render the Possibilities

SIGGRAPH2016 Q

E

etailinc

C

ne VVWorlao

Decals embedded with geometry rasterization

Realtime replacement to Mega-Texture “Stamping”
= Faster workflow / Less disk storage

Just Works ™
= Normal map blending

= | inear correct blending for all channels
= Mipmapping / Anisotropy *

= Transparency
= 50rting
= 0 drawcalls

8k x 8k decal atlas
= BC/

Render the Possibilities

SIGGRAPH2016

o

= Box Projected

etailinc

the Worlc

" ey, €4, & is UOBB normalized extents, p is position

M

0.5
sizeX

scale™

0
0

decaIProj:

M

0.5
sizeY

0
0

scale .

0

0

0.5
N VAYA

0

M

decal

0.5
0.5

0.5
1

1

e e
OX 1X
M _|%o ely
decal —
€. €4
74 VA
0 0

" [ndexing into decal atlas
= Per decal: Scale & bias parameter. E.g.

e
e 1

e 2

2x px
e
82y Py P €q

ZZ pz

0 1

const float4 albedo = tex2Dgrad(decalsAtlas, uv.xy * scaleBias.xy + scaleBias.zw, uvDDX, uvDDY) ;

Render the Possibilities

SIGGRAPH2016

o

etailinc

= Manually placed by artists
= |ncluding blending setup
= A generalization for “Blend Layers”

= |imited to 4k per view frustum
= Generally 1k or less visible

= | odding

= Art setups max view distance

the Worlc

= Player quality settings affect view distance as well

= \Works on dynamic non-deformable geometry

= Apply object transformation to decal

“5%

Render the Possibilities

SIGGRAPH2016

P

" <2 &3

Detailing

]

ne VVWorlao

il
¥

H
i 3 -
.Y N \
\.‘,
\\

Rendaer tne FossIpilties

SIGGRAPH2016

o

1 <25

etalling the Worlo

|
- . .
" \‘ l
5 e
A ey u o TR
= - ; m%@%*
e - L ' R s SR
- P 5] ; .
=]

B CCRAPHOO @

Detailing the Worlc

: m nonnonono.

Render the Possibilities

SIGGRAPH2016 @

Detailing the Worlc

EDOOOODO0

a
e
g
Q
o
=
a
03 .
(n)

Render the Possibilities

SIGGRAPH2016

\,

O
C
>
()
i
6
@)
L
©
i
)
O

- Hhrormresrs

etailinc

ne VVWorlao

P ‘.htwes

SIGGRAPH2016

o

Lig

hting

= Single / unified lighting code path

= For opaque passes, deferred, transparents and decoupled particle lighting (slides 23-27)

= No shader permutations insanity

= Static / coherent branching is pretty good this days — use it !

= Same shader for all static geometry
= | ess context switches

= Components

= Diffuse indirect lighting: Lightmap for static geometry, irradiance volumes for dynamics

= Specular indirect lighting: Reflections (environment probes, SSR, specular occlusion)

= Dynamic: Lights & shadows

Render the Possibilities

SIGGRAPH2016

o

Lightingc

| -

/ /Pseudocode

ComputeLighting(inputs, outputs) {
Read & Pack base textures

for each decal in cell {
early out fragment check
Read textures
Blend results

for each light in cell {
early out fragment check
Compute BRDF / Apply Shadows
Accumulate lighting

}

Render the Possibilities

SIGGRAPH2016 @

Lighting

= Shadows are cached / packed into an Atlas
= PC: 8k x 8Bk atlas (high spec), 32 bit
= Consoles: 8k x 4k, 16 bit

= \/ariable resolution based on distance

= Time slicing also based on distance

= Optimized mesh for static geometry

= | ight doesn't move?
= Cache static geometry shadow map
= No updates inside frustum ? Ship it
= Update? Composite dynamic geometry with cached result = ===}
= Can still animate (e.g. flicker) —

T —
= Art setup / Quality settings affect all above Shadow Atlas

Render the Possibilities

SIGGRAPH2016 @

Lighting

" [ndex into shadow frustum projection matrix

= Same PCF lookup code for all light types
= | ess VGPR pressure

= This includes directional lights cascades
= Dither used between cascades
= Single cascade lookup

= Attempted VSM and derivatives
= All with several artefacts

= Conceptually has good potential for Forward
= Eg. decouple filtering frequency from rasterization

Shadow Atlas

Render the Possibilities

SIGGRAPH2016 @

Lighting

" First person arms self-shadows

\ \ ; ‘ N / /

First Person Self-Shadows: On 5 First‘ Person Self—Shadows:.Off
(Notice light leaking)

Render the Possibilities

SIGGRAPH2016 @

Lightingc

= Keep an eye on VGPR pressure
= Pack data that has long lifetime. e.g: float4 for an HDR color < uint, RGBE encoded
= Minimize register lifetime
= Minimize nested loops / worst case path
= Minimize branches
o6 VGPRS on consoles (PS4)
= Higher on PC due to compiler inefficiency @ [@ AMD compiler team, pretty plz fix - throwing perf out)

= For future: half precision support will help

Render the Possibilities

SIGGRAPH2016 @

Transparents

= Rough glass approximation
= Top mip is half res, 4 mips total
= (Gaussian kernel [approximate GGX lobe)
= Blend mips based on surface smoothness %
= Hefraction transfers limited to 2 per frame for performance

| '1

Glass Roughness Variation

Render the Possibilities

SIGGRAPH2016 @

Per-vertex ?

Particle Lig

= No higher frequency details (e.g. shadows)

Per-vertex + tessellation jcen11]

= Requires large subdivision level
= Not good for GCN / Consoles

Per-pixel 7

= That's a lot of pixels / costly

Mixed resolution rendering ?
= Nguyen04 ? Problematic with sorting

= Aliasing MSAA target ? Platform specific

Per Vertex

E67 -

Py

Per-Pixel*

Tessellation

T -

Render the Possibilities

SIGGRAPH2016

P

ecou

= (Jpservation

Dlec

Panrticle Lic

= Particles are generally low frequency / low res

= Maybe render a quad per particle and cache lighting result ?

= Decouples lighting frequency from screen resolution = Profit

= | ighting performance independent from screen resolution

= Adaptive resolution heuristic depending on screen size / distance

= E.g. 32x32, 16x16, 8x8

= Exact same lighting code path

= Final particle is still full res
= | pads lighting result with a Bicubic kernel.

htiNg

Adaptive resolution

Render the Possibilities

SIGGRAPH2016

o

ecou

Dlec

Panrticle Lic

htiNg

//Pseudocode - Particle shading becomes something like this

Particles (inputs, outputs) {

const float3 lighting = tex2D(particleAtlas, inputs.texcoord)
result = lighting * inputs.albedo;

Render the Possibilities

SIGGRAPH2016

P

ecou

Dlec

= 4k x 4k particle light atlas

Panrticle Lic

Particle Light Atlas

= Size varies per-platform / quality settings

= R11G11B10_FLOAT

= Dedicated atlas regions per-particle resolution

= Some waste, but worked fine — ship it

= Fairly performant: ~0.1 ms

= \\orst cases up to ~1 ms

= Still couple orders magnitude faster

" 5ood candidate for Async Compute

htiNg

Render the Possibilities

SIGGRAPH2016

o

ecoupled Particle Lighting

= Results

Render the Possibilities

SIGGRAPH2016 @

% e

Dbst—E’Pc')g =

=

'y ” . [Sousa13]

"'-‘"—“'*-u

- N

OtIMIZING

ISIst=

—etchingc

= GCN scalar unit for non-divergent operations

= reat for speeding up data fetching

= Save some VGPRs
= Coherent branching

= Fewer instructions (SMEM: 64 Bytes, VMEM: 16 Bytes)

= Clustered shading use case

= Fach pixel fetches lights/decals from its belonging cell

= Divergent by nature, but worth analyzing

0

CN)

Render the Possibilities

SIGGRAPH2016

o

Clusterec

LigQ

’’’’’’

hting Access

o
m—
& ,
o
N ’
< ,)

—atterns

Render the Possibilities

SIGGRAPH2016

o

Clusterec

Access

—atterns

Render the Possibilities

SIGGRAPH2016

'#

Clusterec

Access Patterns

e . -
g — .
I yt BOENN
’ v, v T ca it 00 -
- - '. ‘ "
o Laald - o o
mrm s e m - - aaa™ - o taada

Render the Possibilities

SIGGRAPH2016

o

Clusterec

—atterns

4

P

Render the Possibilities

SIGGRAPH2016

P

Analyzing the Data

= Most wavefronts only access one cell
= Nearby cells share most of their content
= Threads mostly fetch the same data

= Per-thread cell data fetching not optimal

= Not leveraging this data convergence

= Possible scalar iteration over merged cell content

= Don't have all threads independently fetch the exact same data

Render the Possibilities

SIGGRAPH2016 @

L everaging Access Patterns

= Data: Sorted array of item (light/decal) IDs per cell
= Same structure for lights and decals processing
= Fach thread potentially accessing a different node
= Fach thread independently iterating on those arrays Divergent

= Scalar loads: Serialize iteration (ThreadX | A [B | D | |
= Compute smallest item ID value across all threads ﬂ-
= ds_swizzle_b32 / minlnvacationsNonUniformAMD nﬂ

= Process item for threads matching selected index ‘

» Uniform index -> scalar instructions

Serial

| Scalar | A B C[D|E

Render the Possibilities

SIGGRAPH2016 @

= Matching threads move to next index

Special

= Fast path if touching only one cell g

Paths

= Avoid computing smallest item 1D, not cheap on GCN 1 & 2
= Some additional (minor) scalar fetches and operations

= Serialization assumes locality between threads
= Can be significantly slower if touching too many cells

= Disabled for particle lighting atlas generation

= Opaque render pass, PS4 @ 1080p
= Default: 8.9ms
= Serialized iteration only: 6.7ms
= Single cell fast path only: 7.2ms
= Serialized iteration + fast path: 6.2ms

Render the Possibilities

SIGGRAPH2016

o

ynamic

esolution Scaling

= Adapt resolution based on GPU load
= Mostly 100% on PS4, more aggressive scaling on Xbox

= Hender in same target, adjust viewport size

" |ntrusive: requires extra shader code

= Only option on OpenGL

= Future: alias multiple render targets

® Possible on consoles and Vulkan

= TAA can accumulate samples from different resolutions

= Upsample in async compute

Render the Possibilities

SIGGRAPH2016

o

Async Post

Processing

= Shadow & depth passes barely use compute units

= Fixed graphics pipeline heavy
= Opaque pass not 100% busy either
= Overlap them with post processing

= Render GUI in premultiplied alpha buffer on GFX queue

= Post process / AA / upsample / compose Ul on compute queue

= Overlap with shadows / depth / opaque of frame N+1

= Present from compute queue if available

= Potentially lower latency

Render the Possibilities

SIGGRAPH2016

o

SCN Wave Limits Tuning

= Setup different limits for each pass
= Disable late alloc for high pixel/triangle ratio

= Restrict allocation for async compute
= Avoid stealing all compute units
= Mitigate cache thrashing

= \Worth fine tweaking before shipping
= Saved up to 1.5ms in some scenes in DOOM!

Render the Possibilities

SIGGRAPH2016 @

OGN

le

Ister Usac

= Think globally about register and LDS allocation
= Do not always aim for divisors of 256

= Bear in mind concurrent vertex / async compute shaders

" Fine tweaking to find sweet spot
= Example: DOOM opaque pass

= GFX queue: 56 VGPRs for PS, 24 for VS

= Compute queue: 32 VGPRs for upsample CS
= 4PS + 1C5/VS or 3PS + 2CS + 1VS
= Saves 0./ms compared to a 64 VGPRs version

Render the Possibilities

SIGGRAPH2016

o

VWhat's next

= Decoupling frequency of costs = Profit

" [mprove
= Texture quality
= (5lobal illumination
= Overall detail
= \Workflows
" etc

Render the Possibilities

SIGGRAPH2016 @

Special Thanks

= Code

= Robert Duffy, Billy Khan, Jim Kejllin, Allen Bogue, Sean Flemming, Darin Mcneil, Axel Gneiting,
Michael Kopietz, Magnus Hogdahl, Bogdan Coroi, lvo Zoltan Frey, Johnmichael Quinlan, Greg
Hodges

= Art

= Tony Garza, Lear Darocy, Timothee Yeremian, Jason Martin, Efgeni Bischoff, Felix Leyendecker,
Philip Bailey, Gregor Kopka, Pontus \Wahlin, Brett Paton

= Entire id Software team

= Natalya Tatarchuk

Render the Possibilities

SIGGRAPH2016 @

We are Hiring !

= \/arious openings across Zenimax studios

= Please visit https://jobs.zenimax.com

Render the Possibilities

SIGGRAPH2016 @

Thankyou

= Tiago Sousa
= tiago.sousa@idsoftware.com
= Twitter: @idSoftwareTiago

= Jean Geffroy
= Jean.geffroy@idsoftware.com

Render the Possibilities

SIGGRAPH2016 @

eferences

[1] “Clustered Deferred and Forward Shading”, Ola Olson et al., HPG 2012

[2] "Practical Clustered Shading”, Emil Person, Siggraph 2013

[3] “CryENGINE 3 Graphics Gems®, Tiago Sousa, Siggraph 2013

[4] “Fast Rendering of Opacity Mapped Particles using DirectX11”, Jon Jansen, Louis Bavoil, Nvidia Whitepaper 2011
[3] “Fire in the Vulkan Demo”, H Nguyen, GPU Gems, 2004

[6] “Lost Planet Tech Overview”, http://game.watch.impress.co.jp/docs/20070131/3dIp.htm

[71 “GPU Best Practices (Part 2)°, Martin Fuller, Xfest 2015

[8] “Southern Island Series Instruction Set Architecture”, Reference Guide, 2012

[9] “GCN Shader Extensions for Direct3D and Vulkan®, Matthaeus Chajdas, GPUOpen.com, 2016
[101 “id Tech 5 Challenges”, J.M.P. van Waveren, Siggraph, 2009

[11]1 "Mipmapping Normal Maps”, Toksvig M, 2004

[12] “Real-Time Rendering, 3™ Edition”, Moller et al., 2008

[13] “Physically-based lighting in Call of Duty: Black Ops”, Dimitar Lazarov, Siggraph 207111

[141 “Specular Showdown in the Wild West”, Stephen Hill, 2011

Render the Possibilities

SIGGRAPH2016 @

onNnus Slio

eSS

Render the Possibilities

SIGGRAPH2016

o

Lightingc

Light types
= Point, projectar, directional (no explicit sun), area (quad, disk, sphere)
= [BL (environment probe)
Light shape
= Most lights are OBBs: Acts as implicit “clip volume” to help art preventing light leaking
= Projector is a pyramid

Attenuation / Projectors
= Uses art driven texture at this point
= Stored in an atlas, similar indexing as decals

= Art sometimes uses for faking shadows
= BC4

Environment Probes
= Cube map array, index via probe ID

= Fixed resolution, 128 x 128 Projector Atlas
= BCBH

Render the Possibilities

SIGGRAPH2016 @

eferred Passes

* \Wanted dynamic and performant AO & reflections % -~
= Decoupling passes helps mitigate VGPR pressure ;

= P extra targets during forward opague passes

= Specular & smoothness: RGBAS
= Normals: R16G16F

= Allows compositing probes with realtime reflections

= Final Composite
= 5SR, environment probes, AO / specular occlusion, fog

Render the Possibilities

SIGGRAPH2016 @

