¥ SIGGRAPH2018

Efficient Screen-Space \\
Subsurface Scattering Using

Burley’s Normalized Diffusion |
In Real-Time)

Evgenii Golubev (Unity Technologies)

&) unity

Hello again, and thanks for sticking around.

I will give an overview of how subsurface scattering (or SSS for short) is implemented
in Unity’s High Definition Render Pipeline.

Due to time constraints, | will be brief. You can check the slides for more details later.

What is Subsurface Scattering?

e Light transport within the participating media under the surface

N
8C

Let’s start by trying to understand what is subsurface scattering.
By definition, it is light transport within the participating media under the surface.

Light is refracted at the dielectric boundary, ...

What is Subsurface Scattering?

e Light transport within the participating media under the surface

... scattered within the participating media multiple times, ...

What is Subsurface Scattering?

e Light transport within the participating media under the surface

... and refracted outside again.

What is Subsurface Scattering?

® BSSRDF fss (pent-ryape.r.it: l1 1") - CF!. (pent'ry: l) R(”pfrltry — Pezit | |)Ff (Per.ih T-"')

N
P

Scattering is typically assumed to be isotropic (which is a reasonable assumption for
multiple scattering), and is therefore modelled with a radially symmetric diffusion
profile [Jensen 2001].

This leads us to the following definition of the bidirectional subsurface scattering
reflectance distribution function (or BSSRDF for short), where R is the diffusion
profile, F_t is Fresnel transmission and C is the normalization constant.

What is Subsurface Scattering?

¢

What this means in practice is that materials such as skin typically look smooth and
organic rather than plasticy. <here is an example of a model showing subsurface
scattering on skin and eyes rendered with HDRP in real-time>

You also get some color bleeding around areas where illumination changes abruptly.

It appears that there’s a certain misconception that with SSS you get pronounced
color bleeding near all shadow boundaries. In fact, it is very subtle if the shadow is
soft.

Real-Time Subsurface Scattering

e Original: texture space, 4x Gaussian fit to measured
data [d'Eon 2007]

e Motivation: Gaussian convolution is separable —
IER

e Games: screen-space algorithm

e Diffusion profile models:
o 1 Gaussian and a Dirac delta [Mikkelsen 2010]

i 1 Image credit: Eugene d'Eon and
o 2 GaUSSIanS [Jlmenez 201 4] David Luebke, NVIDIA Corporation

&) unity

How is subsurface scattering typically implemented?

The first real-time SSS approach was proposed by Eugene d’Eon, and used a mixture
of Gaussians (4, to be specific) to create a numerical fit for a measured diffusion
profile.

Gaussian was chosen for several reasons:
- A mixture of Gaussians is a convenient target for a numerical fit.
- Additionally, convolution with a Gaussian is separable, and so it has a linear
(rather than quadratic) complexity in the number of samples.
- And finally, repeated convolutions with a “smaller” Gaussian are equivalent to
a single convolution with a “larger” Gaussian.

This approach yields fantastic results, but it is still too expensive for games, even
today. Therefore, real-time constraints force us to implement SSS in the screen
space.

The filter is usually composed of 1 or 2 Gaussians and a Dirac delta function which, in
practice, means that you interpolate between the original and the blurred image.

Problems with Separable Subsurface Scattering

e Motivation: Gaussian convolution is separable, and is therefore fast
o Only separable when filtering over a plane

e Bilateral filtering makes the convolution “pseudo-separable”
o Results are visually plausible

e Gaussian mixture formulation is clearly non-separable unless you
perform 2 convolution passes per Gaussian
o Can lead to Somewhat Separable Screen Space SSS (SSSSSSS), which

may cause artifacts that must be fixed on the content side

o Performing 4 passes for 2 Gaussians is too expensive in practice

< unity

Problems with Separable Subsurface Scattering

e 2 Gaussians only provide a partial fit for the measured data [Burley
201

MC reference
our approx.
: Gauss2 approx.
dipole diffusion + 1scat
better dipole + 1scat ----
beam diffusion + 1scat

1T 2 3 4 5 6 7 8
r

Image credit: Per H. Christensen and Brent Burley, Pixar & Walt Disney Animation Studios

A single Gaussian does a pretty good job at approximating multiple scattering.
However, even a mix of 2 Gaussians struggles to accurately represent the
combination of single and multiple scattering.

On the image, you can see the reference results in white, and the dual Gaussian
approximation in red.

e Gaussian mixtures are not artist-friendly
o Gaussian is just a math concept
O Artist is forced to either use the measured data or
“eyeball” the numerical fit

m Too many degrees of freedom (7)
m Most combinations are nonsense

After implementing the Gaussian mix model, we have encountered another problem -
it is not artist-friendly.

A Gaussian is just a mathematical concept, and it has no physical meaning in the
context of SSS. And when you have two of them with a lerp parameter, that's 7

degrees of freedom, and it’s not exactly clear how to set them up so that the resulting
combination makes sense.

It is worth noting that a skilled artist can still achieve great results with the Gaussian
mix model. However, this can be a lengthy and complicated process, which is not a
right fit for Unity.

But Non-Separable Convolution is Slow?

e Let's try, anyway. :-)

Burley’s Normalized Diffusion Model

e A k.a. “Disney SSS”

e Developed by Brent Burley and Per Christensen [Burley 2015]

e Curve fit for the reference MC data [Wang 1995]

e Accounts for both single and multiple scattering within participating media

So, is there a better solution? Well, it is in the title of this talk. :-)
We implemented Burley’s normalized diffusion model, which we call the Disney SSS.
It provides an accurate fit for the reference data obtained using Monte Carlo

simulation.
Naturally, that means accounting for both single and multiple scattering.

Burley’'s Normalized Diffusion Model
R(r) = As&

8nr
Reflectance profiles

=SNWHB NN
[oleleleleleelele)

A=
A=
A=
A=
A=
A=
A=
A=
A=

OOO000000

2
r [m]

Q unity Image credit: Per H. Christensen and Brent Burley, Pixar & Walt Disney Animation Studios

It has only two parameters: the volume albedo A, and the shape parameter s. Both of

them can be interpreted as colors.
The shape parameter is inversely proportional to the scattering distance, and this is

what we expose in the Ul

If we look at the graph of the resulting profiles, two things become obvious:

1. The sharp peak and the long tail cannot be modeled with a single Gaussian
2. The resulting filter is clearly non-separable

Burley’s Normalized Diffusion Model

e The diffusion profile is normalized, and can be used as a PDF

(;M fox rR(r)drd¢ = A
plr) = "4

A

The diffusion profile is normalized, and can be directly used as a probability density
function (or PDF for short). This is a useful property for Monte Carlo integration, as
we’'ll see in a bit.

Implementing Subsurface Scattering

e A diffuse BRDF is is a far-field approximation of SSS
o Use the formulation of the Disney Diffuse BRDF to define the diffuse transmission
behavior [Burley 2015]
m Not physically plausible, but better than assuming a Lambertian distribution

fa(l,v) = 2 Fa()Fa (v) + for
Fy(z) =1-05(1— |n-z|)®

A diffuse BRDF approximates SSS when the scattering distance is within the footprint
of the pixel.

What this means is that both shading models should have the same visuals past a
certain distance.

In order to achieve that, we use the formulation of the Disney Diffuse BRDF to define
the diffuse transmission behavior at the dielectric boundary.

While it doesn’t match transmission defined by the GGX model, it’s still better than
assuming a Lambertian distribution.

Implementing Subsurface Scattering

e No specular transmission support (only single and multiple scattering)

We do not model specular transmission, and our model does not generalize to low-
albedo materials like glass.

Note: transmission may be a confusing term. Specular transmission refers to the
Fresnel transmission at a smooth dielectric boundary.
Diffuse transmission models transmission through a rough dielectric boundary, and

typically assumes a high amount of multiple scattering. Often, it’s just the Lambertian
term.

Implementing Subsurface Scattering

e A diffuse BRDF is a far-field approximation of SSS
o Use the surface albedo as the volume albedo
m Provide 2 texturing options [d'Eon 2007]
e Post-scatter texturing: albedo at the exit location
e Pre- and post-sna’r:pr tevturina: eartialhedn) nl’r hnth the entry and the
exit

To enforce visual consistency, we also directly use the surface albedo as the volume
albedo.

We offer 2 albedo texturing options:

1. Post-scatter texturing should be used when the albedo texture already
contains some color bleed due to SSS. That is the case for scans and
photographs. In this mode, we only apply the albedo once, at the exit location.

2. Pre- and post-scatter texturing effectively blurs the albedo, which can result in
a softer, more natural look, which is desirable in certain cases.

Subsurface Scatterih‘:’fgg‘(DisabIea)‘.

Let’s look at some examples of both texturing modes.
We'll start with the original model of Emily kindly shared by the WikiHuman project.

This picture clearly needs some SSS...

Subsurface Scattering (Post-Scatter, ey

So here it is, with post-scatter texturing enabled.

(flip back and forth)

You may notice that the post-scatter option does a better job at preserving detail, as
expected.

The difference is subtle, so | encourage you to look at the slides on a good display
later.

Subsurface Scattering (Pre- And Post-Sc

And for comparison, this is pre- and post-scatter.

(flip back and forth)

You may notice that the post-scatter option does a better job at preserving detail, as
expected.

The difference is subtle, so | encourage you to look at the slides on a good display
later.

Implementing Subsurface Scattering

e The diffusion profile is normalized
o It's effectively an energy-conserving blur along the geometric surface
e Approximate it with a bilateral filter in the screen space [Mikkelsen
2010]

Since Burley’s diffusion profiles are normalized, SSS can be implemented as an
energy-conserving blur filter.

You can imagine light energy being redistributed from the point of entry across the
surrounding surface...

Similarly to the previous approaches, we perform convolution in the screen space,
and use the depth buffer to account for the surface geometry.

Subsurface Scattering Algorithm

Let’s have a visual overview of the entire algorithm.

Lighting pass:

Compute incident radiance at the entry point of the surface

Perform diffuse transmission from the light direction into the surface
Apply the entry point albedo depending on the texturing mode
Record transmitted radiance in a render target

Subsurface Scattering Algorithm

SSS pass:

Perform bilateral filtering of the radiance buffer with the diffusion profile around the
exit point

Apply the exit point albedo depending on the texturing mode

Perform diffuse transmission outside of the surface in the view direction

Subsurface Scattering Algorithm

Ideally, we should directly sample the surface of the object*, but that is too expensive
for real-time applications.

Instead, we use a set of samples which we precompute offline, and (conceptually)
place them on a disk, pictured here with a dashed green line.

As the picture demonstrates, this planar approximation is not necessarily a good
match for the shape of the surface.

What's arguably worse, since projection of samples from the disk onto the surface
distorts distances, projected samples end up within a different distribution. We’ll have
to do something about that, but first...

Note: that’s basically SSS using photon mapping.

Sampling the Diffusion Profile

e Perform disk sampling according to the diffusion profile
o Want a good sample distribution
m Few samples for performance reasons, make each and every one of
them count!

... let’s talk about disk sampling.
We can only take a few samples for performance reasons, so we need to make each
and every one of them count.

Sampling the Diffusion Profile

e Perform disk sampling according to the diffusion profile
o Perform importance sampling — distribute r according to the PDF
p(r) p(r) = &(e™ + e 57/3)
u PDF: P(r) =1 je " — fe /3
m CDF:
m Since s is a spectral value, and (1/s « ScatteringDistance « o?),
importance sample the color channel with the smallest value of s

Therefore, we importance sample radial distances - we distribute them according to
the PDF of the diffusion profile.

The shape parameter s is a spectral value, and it is inversely proportional to the
scattering distance, which itself is proportional to variance.

Since we want to achieve the best possible variance reduction, we choose to
importance sample the color channel which corresponds to the largest scattering
distance (for skin, it is the red channel).

Sampling the Diffusion Profile

e Perform disk sampling according to the diffusion profile
o Perform importance sampling — distribute r according to the PDF

p(r)

m The CDF P(r) is not analytically invertible

m Perform numerical inversion using Halley's method [Press 2007]
e For given s and x, solve P(r, s) = x
e Similar to Newton's method, but requires 2 derivatives
e Converges to the full FP precision in 2-4 iterations

< unity

For importance sampling, it is necessary to invert the cumulative distribution function

(or CDF for short).
Unfortunately, the CDF is not analytically invertible, so we resort to numerical

inversion using Halley’s method, which is, nonetheless, quite efficient in practice.

Note: Halley’s method is the second algorithm in the class of Householder's methods,

after Newton's method.

Sampling the Diffusion Profile

e Perform disk sampling according to the diffusion profile
o Uniformly sample the angle ¢ using the Fibonacci sequence [Hannay
2004]
m Typically performs better than other low-discrepancy sequences
distributed on spheres and disks [Marques 2015]
m The convolution with the diffusion profile is then simply the dot product
of sample values and weights:

g n R Ti n
I~2ZY, (LL(ri, 1) = S wiL(ri, ¢;)

p(ri)

Finally, we use the Fibonacci sequence to uniformly sample the polar angle. It yields
a good sample distribution on spheres and disks, and is useful in many contexts,

such as reflection probe filtering.

We use the Monte Carlo integration method to perform convolution across the disk. It
simply boils down to the dot product of sample values and weights.

Sampling the Diffusion Profile

The importance sampling process results in a precomputed sample pattern which can
look like this.

Notice that we sample more densely near the origin since most of the energy is
concentrated there.

Bilateral Filtering

e Allows filtering across non-planar surfaces [Mikkelsen 2010]
' N

< 8

Now that we know how to precompute the samples, let’s return to our planar

approximation...

Since the surface geometry is not aligned to the disk, and we use precomputed
samples, our only option is to re-weight the samples somehow. This process is called

bilateral filtering.

Bilateral Filtering

- Model credit-Yibing Jiang

Bilateral filtering makes convolution take depth into account.
Getting this right is very important, not just for a quality boost, but also to avoid the
background bleeding onto the foreground, and vice versa.

Bilateral Filtering

e Allows filtering across non-planar surfaces [Mikkelsen 2010]
R(ri,d;)

I~ 25" oy LG/ri +di i)

e Using the radial symmetry of the diffusion profile, we get
/021 32
I n 21 R(y/r3+d})

n L=l " p(rdy)

L(7'? +d12,¢,)

Using the Monte Carlo formulation of convolution, sample weights are defined as the
ratio between the value of the function and the PDF.

Modifying the value of the function is easy - we just evaluate the profile using the
actual Euclidean distance between the entry and the exit points.

Note: for the ease of exposition, the math assumes a right triangle and thus uses the
Pythagorean theorem. Generally speaking, you should account for the perspective
distortion as well [Mikkelsen 2010].

Bilateral Filtering

¢ Modifying the PDF is not so simple, since sample
positions are already distributed according to the old
“planar” PDF
o Intuitively, p(x) « 1/A(x)

3 n N AL n (X:)
fﬂ flz)dA(z) = > 7" | f(zi)A(z;) ~ %Ei;l i:(X,)
o Could add some cosine terms depending on the slope...
e In practice, accounting for the shape of the surface is hard

o Try computing the surface area of an ear in the SS :-)

< unity

Unfortunately, we cannot do the same for the PDF, since our sample positions are
already distributed according to this old “planar” PDF.

If we make a connection between the formula for Monte Carlo integration and the
guadrature formula for integration over area, we can see that the PDF value is
inversely proportional to the area associated with each sample.

But how do you compute this area? It's possible to make certain assumptions about
the surface and add some cosine factors to account for slopes...

However, solving this problem in a general and robust way is hard, especially due to
the limited information in the screen space.

Bilateral Filtering

¢ Modifying the PDF is not so simple, since sample positions are already
distributed according to the old “planar” PDF

e Instead, simply enforce energy conservation (normalize the weights to
satisfy the partition of unity)

Instead, we can simply utilize the fact that our filter is meant to be energy conserving,
and normalize the weights to sum up to 1.

Orders of Approximation

Now that we know how to perform bilateral filtering across the disk, let's consider how
to place and orient this disk.

The disk is naturally placed at the intersection of the camera ray with the geometry, in
the world or the camera space.

But what about the orientation of the disk? We have several options.

The 0 order approximation is to align the disk parallel to the screen plane, which
directly corresponds to a disk in the screen space.

It's simple and fast, but can result in poor sample distribution for geometry at oblique
angles.

Orders of Approximation

A better solution is to align the disk with the tangent plane of the neighbourhood of the
surface point (1st order approximation).

This can be challenging because the G-Buffer typically does not contain the
interpolated vertex normal.

And, unfortunately, using the shading normal can result in artifacts, as it often has
little in common with the geometry around the surface point, and can even be back-
facing.

It's worth noting that even the naive method performs quite well in practice.

Translucency

SSSis also responsible for the translucent look of back-lit objects.

Translucency

While the underlying physical process is exactly the same, for efficiency reasons, we
handle this effect in a more simple way.

We implemented 2 different approaches.

The first one only works with thin objects (and is commonly used for foliage), and the
second one attempts to handle the more general translucency case.

The primary difference between the two is geometric thickness, which forces us to
handle shadows in two different ways.

Thin Object Translucency

e Use the simple model of [Jimenez 2010]
o Assume that for the current pixel, the geometry is a planar slab of constant
thickness with the back-face normal being the reversed front-face normal
m Thickness (along the normal) is supplied in a texture map
o Assume that the entire back face receives constant illumination
o As geometry is thin, shadowing is the same for the front and the back faces
o Analytically integrate the diffusion profile over the back face
I= [27rR(v/r? + t?)Lydr = iA(e*St + 3e7%/3) Ly
o As before, we transmit twice and apply the albedo of the front face

&0 unity

Thin Object Translucency
<A -
-0

" Thickness

from texture

For thin object translucency, we use the simple model proposed by Jorge Jimenez.
We assume that for the current pixel, the geometry is a planar slab of constant
thickness with the back-face normal being the reversed front-face normal.

Thickness is provided in an artist-authored texture map.

Additionally, we assume that the entire back face receives constant illumination.

As geometry itself is thin, shadowing is the same for the front and the back faces, so
we can share a single shadow map fetch.

Given this simplified setup, it's possible to analytically integrate the contribution of the
diffusion profile over the back face.

And as before, we transmit twice and apply the albedo of the front face.

Thick Object Translucency

e Shadows have to account for geometric thickness
e Attempt to compute the thickness from the shadow map [Barré-Brisebois
2011]
o But shadow precision is imperfect, and can bring its own artifacts
o If shadow map says the object is not occluded, the thickness is 0!
e Use a combined approach
o Use max(textureThickness, shadowThickness)
o Shadows are only used to compute the thickness, not for actual shadowing
m If shadowThickness is large, transmission performs lighting attenuation

@ung,OnIy need 1x shadow sample in toﬂtal for both direct and transmitted lighting

Thick Object Translucency

\‘/___

> .

Shadow

V4
7

)

For thicker objects, reusing the shadowing status of the front face obviously does not
work (since the back face may shadow the front face).

Initially, we attempted to compute thickness at runtime solely using the distance to the
closest occluder given by the shadow map.

It quickly became apparent that this approach does not work well for fine geometric
features due to the limited precision of shadow maps.

Instead, we opted for a combined approach. We compute thickness using both
methods, and take the maximum value, which gives an artist an opportunity to work
around shadow mapping issues using the “baked” thickness texture.

Thick Object Translucency

The method admittedly requires some tweaking, but with some effort it is possible to
achieve plausible results.

Optimizations

e SSS is implemented as a full-screen CS pass over an R11G11B10 buffer
e SSS pass CS is heavily optimized for high occupancy on GCN [Aaltonen
2017]
o 32 VGPRs, 38 SGPRs, 6656 byte LDS for a 16x16 thread group size
e Use the LDS as an L0S for a 20x20 neighbourhood to reduce the VRAM
traffic
o Store radiance and linear depth in a SoA to reduce LDS bank conflicts
o Order threads along the Z-order curve [Morton 1966] to match the GCN
render target memory layout

< unity

A few words about implementation details, and how to make it efficient...

As | mentioned earlier, we importance sample offline, and use a set of precomputed
samples at runtime.

The SSS pass itself is implemented as a full-screen compute shader. It is bandwidth-
heavy and makes heavy use of LDS to reduce off-chip memory traffic.

Thread Group & LDS Usage

The thread group (shown as numbers) is composed of 4 wavefronts, with individual
threads ordered along the Z-order curve for improved data locality.

The LDS cache (shown as color blocks) contains radiance and linear depth values,
and has a 2 texel border so that each pixel has at least a small cached
neighbourhood.

Optimizations

e G-Buffer pass tags the stencil with the material type
o Extract the HTile information to early-out
e Lighting pass uses material classification [Garawany 2016]
o SSS materials use an extended standard Lit shader
o Tag the SSS buffer to avoid reading the stencil during the SSS pass
o Apply both the entry- and exit-point transmission during the lighting pass
m Conceptually wrong, but the visual difference is minimal

We tag the stencil with the material type during the G-Buffer pass. This allows us to
create a hierarchical stencil representation, and discard whole pixel tiles during the
SSS pass.

During the lighting pass, we also tag the subsurface lighting buffer in order to avoid
performing per-pixel stencil test during the SSS pass.

We also evaluate both transmission events during the lighting pass. While this is
conceptually wrong, the visual difference is very small, and it allows us to avoid
reading the normal buffer during the SSS pass.

Optimizations

e Implement an intra-shader discrete LOD system
o Disk of max radius within 1 pixel footprint — no convolution
o Disk of max radius within 4x4 pixel footprint — use fewer samples
o Disk of max radius beyond 4x4 pixel footprint — use more samples
o Consistent visuals, no LOD “pop”

We also implemented a basic LOD system.

We change the number of samples depending on the screen-space footprint of the
filter in 3 discrete steps: we disable filtering for sub-pixel sized disks, we use 21
samples for medium sizes, and 55 otherwise.

Visuals remain consistent, and LOD transitions are invisible.

Optimizations

e Combat undersampling with random kernel rotations [Jimenez 2014]

We also found it important to perform random per-pixel rotations of the sample
distribution. This allows us to trade structured undersampling artifacts for less
objectionable noise.

Performance

e Test on the base PS4 at 1080p
e 21 samples per pixel —

e CS performs convolution and merges
the results with the specular lighting

e The GPU time is 1.16 ms w

Model credit: Infinite-Realities

On PS4, we restrict ourselves to 21 samples per pixel.

With the setup you see on the screen, the compute shader which performs
convolution and merges diffuse and specular lighting buffers takes 1.16 milliseconds
to execute.

Visual Comparison:
Jimenez SSSS apprg

We also implemented the latest Gaussian mix model of Jorge Jimenez for
comparison.

If you can see the difference, you don’t need glasses. :-)

flip back and forth

With a single parameter, the Disney model is very easy to control, and it's possible to
achieve good results in a matter of minutes.

Visual Comparison:
Disney Burley SSSS

We also implemented the latest Gaussian mix model of Jorge Jimenez for
comparison.

If you can see the difference, you don’t need glasses. :-)

flip back and forth

With a single parameter, the Disney model is very easy to control, and it's possible to
achieve good results in a matter of minutes.

Visual Comparis(
Jimenez SSSS ay

The primary advantage of the Disney model is sharper visuals, which preserve more
normal mapping details given the same scattering distance.

Many thanks to my colleague Sebastien Lachambre for allowing us to use the scan of
his head.

Visual Comparis(
Disney Burley, SS

The primary advantage of the Disney model is sharper visuals, which preserve more
normal mapping details given the same scattering distance.

Many thanks to my colleague Sebastien Lachambre for allowing us to use the scan of
his head.

Limitations

e Undersampling can result in visual noise

A few words about limitations...

Subsurface scattering is implemented as a convolution of the subsurface lighting
buffer with the diffusion profile.

The diffusion profile is importance sampled, while lighting is not. Therefore,
undersampling of the lighting signal can result in the typical stochastic noise.

Under sufficient illumination, there are usually no visible problems. However, artificial
lighting conditions can cause issues.

For example, a simple checkerboard pattern of alternating lit and completely unlit
patches is, technically speaking, not a bandlimited signal.

We use temporal antialiasing to reduce the amount of noise.

Limitations

e Undersampling can result in visual noise

e Setting the scattering distance to a large value can degrade performance
e Thick object translucency is not very accurate for large thickness values

Another limitation of our method is kernels with very large screen footprint. Samples
end up being very far apart, trashing the texture cache and degrading performance.

Finally, thick object translucency makes too many assumptions to produce accurate
results for complex thick objects.

Future Work

e Add support for tangent space convolution
o Compute a robust tangent space normal from the depth buffer
e Go beyond the current “constant thickness uniformly lit slab” model
o Conceptually similar to brute-force numerical integration of [Jimenez
2013] performed during the lighting pass
m Store diffuse lighting and depth for the closest back face
m Perform a screen-space translucency pass
e Essentially the same as the SSS pass, except we accumulate the
contribution of the back face to the front face

< unity

In the future, we would like to extend our implementation to properly support tangent-

space integration.
Since interpolated vertex normals are not available in the G-Buffer, our plan is to
compute a robust tangent space normal from the depth buffer.

For translucency, we would like to go beyond the current “constant thickness

uniformly lit slab” model.
This requires diffuse shading of the closest back face, and another screen-space
pass to integrate it with front-face SSS.

Thank You

Evgenii Golubev:

Thank you.

References

1. [Jensen 2001] Henrik W. Jensen, Stephen R. Marschner, Marc Levoy and Pat Hanrahan. A Practical Model for Subsurface Light
Transport.

2. [Mikkelsen 2010] Morten S. Mikkelsen. Skin Rendering by Pseudo-Separable Cross Bilateral Filtering.

3. [Jimenez 2010] Jorge Jimenez, David Whelan, Veronica Sundstedt and Diego Gutierrez. Real-Time Realistic Skin Translucency.

4. [Jimenez 2013] Jorge Jimenez and Javier von der Pahlen. Next-Generation Character Rendering.

5. [Jimenez 2014] Jorge Jimenez, Karoly Zsolnai, Adrian Jarabo, Christian Freude, Thomas Auzinger, Xian-Chun Wu, Javier von der
Pahlen, Michael Wimmer and Diego Gutierrez. Separable Subsurface Scattering.

6. [d'Eon 2007] Eugene d’'Eon, David Luebke and Eric Enderton. Efficient Rendering of Human Skin.

7. [Barré-Brisebois 2011] Colin Barré-Brisebois and Marc Bouchard. Approximating Translucency for a Fast, Cheap and Convincing
Subsurface Scattering Look.

8. [Burley 2015] Brent Burley and Per H. Christensen. Approximate Reflectance Profiles for Efficient Subsurface Scattering.

9. [Wang 1995] Lihong Wang, Steven L. Jacques and Ligiong Zheng. Monte Carlo Modeling of Light Transport in Multi-Layered Tissues.

10.[Press 2007] William H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery. Numerical Recipes, 3rd Edition.

11.[Morton 1966] G. M. Morton. A Computer-Oriented Geodetic Data Base, and a New Technique in File Sequencing.

@Q’.nﬁ%nay 2004] John H. Hannay and John F. Nye. Fibonacci N i .'Ir?{ggrar.‘on on a Sphere.

References

13.[Marques 2015] Ricardo Marques, Christian Bouville, Luis P. Santos and Kadi Bouatouch. Efficient Quadrature Rules for
Illumination Integrals.

14.[Garawany 2016] Ramy E. Garawany. Deferred Lighting in Uncharted 4.

15.[Aaltonen 2017] Sebastian Aaltonen. Optimizing Gpu Occupancy and Resource Usage with Large Thread Groups.

16.[Vos 2014] Nathan Vos. Volumetric Light Effects in Killzone: Shadow Fall.

17.[Wronski 2014] Bart Wronski. Volumetric Fog: Unified, Compute Shader Based Solution to Atmospheric Scattering

18.[Hillaire 2015] Sébastien Hillaire. Physically Based and Unified Volumetric Rendering in Frostbite.

19.[Wright 2017] Daniel Wright. Volumetric Fog, Unreal Engine Livestream.

20.[Fong 2017] Julian Fong, Magnus Wrenninge, Christopher Kulla, and Ralf Habel. Production Volume Rendering.

21.[Cornette 1992] William M. Cornette and Joseph G. Shanks. Physically Reasonable Analytic Expression for the Single-Scattering
Phase Function.

22.[Toublanc 1996] Dominique Toublanc. Henyey-Greenstein and Mie Phase Functions in Monte Carlo Radiative Transfer Computations.

23.[Klemen 2012] Brano Klemen. Maximizing Depth Buffer Range and Precision.

24.[Laine 2013] Samuli Laine. A Topological Approach to Voxelization.

< unity

References

25.[Veach 1997] Eric Veach. Monte Carlo Methods for Light Transport Simulation.

26.[Dutré 2006] Philip Dutré, Kavita Bala and Philippe Bekaert. Advanced Global lllumination, 2nd Edition.

27.[Novék 2018] Jan Novak, lliyan Georgiev, Johannes Hanika and Wojciech Jarosz. Monte Carlo Methods for Volumetric Light
Transport Simulation.

28.[Heitz 2014] Eric Heitz. Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs.

29.[Heitz 2016] Eric Heitz, Johannes Hanika, Eugene d’Eon and Carsten Dachsbacher. Multiple-Scattering Microfacet BSDFs with the
Smith Model.

30.[Heitz 2017] Eric Heitz and Stephen Hill. Real-Time Line- and Disk-Light Shading.

31.[Lagarde 2014] Sébastien Lagarde and Charles de Rousiers. Moving Frostbite to PBR.

32.[Lagarde 2016] Sébastien Lagarde. An Artist-Friendly Workflow for Panoramic HDRI.

33.[Brisebois 2012] Colin Barré-Brisebois and Stephen Hill. Blending in Detail.

34.[Belcour 2017] Laurent Belcour and Pascal Barla. A Practical Extension to Microfacet Theory for the Modeling of Varying
Iridescence.

35.[Kulla 2011] Christopher Kulla and Marcos Fajardo. Importance Sampling of Area Lights in Participating Media.

@d‘!mmla 2017] Christopher Kulla and Alejandro COU_F,}’ Revisiti g Ehxﬁigq!/y@ased Shading at Imageworks.

References

37.[Yang 2009] Lei Yang, Diego Nehab, Pedro Sander, Pitchaya Sitthi-amorn, Jason Lawrence and Hugues Hoppe. Amortized
Supersampling.
38.[Duff 2017] Tom Duff. Deep Compositing Using Lie Algebras.
39.[Mitchell 1991] Don P. Mitchell. Spectrally Optimal Sampling for Distribution Ray Tracing.
40.[Smith 1995] Alvy Ray Smith. A Pixel Is Not A Little Square.
41.[Wiki H] Wikipedia.
42.[Getreuer 2011] Pascal Getreuer. Linear Methods for Image Interpolation.
43.[Nehab 2014] Diego Nehab. A Fresh Look at Generalized Sampling.
44.[Persson 2008] Emil Persson. Post-Tonemapping Resolve for High Quality HDR Antialiasing in D3D10.
45.[Zhang 2018] Eric Zhang. Improved Tile-Based Light Culling with Spherical-Sliced Cones.
46.[Salvi 2016] Marco Salvi. An Excursion in Temporal Supersampling.
47 [Mikkelsen 2008] Morten S. Mikkelsen. Simulation of Wrinkled Surfaces Revisited.
48.[Mikkelsen 2010] Morten S. Mikkelsen. Bump Mapping Unparametrized Surfaces on the GPU.
49 [Mikkelsen 2016] Morten S. Mikkelsen. Fine Pruned Tiled Light Lists.
@d‘.'m‘!son 2012] Ola Olsson, Markus Billeter and UIfA sarsson, Q{ygggrgg‘Dgferred and Forward Shading.

References

37.[Burley 2012] Brent Burley. Physically-Based Shading at Disney.

38.[McAuley 2015] Steve McAuley. The rendering of far cry 4.

39.[Revie 2011] Donald Revie, Implementing Fur Using Deferred Shading.

40.[Lagarde 2011] Sébastien Lagarde. Feeding a physically based shading model.

41.[Lagarde 2013] Sébastien Lagarde. Memo on Fresnel equations.

42 .[Brinck 2016] Waylon Brinck and Andrew Maximov. Technical art of Uncharted 4.

43.[Sousa 2016] Tiago Sousa and Jean Geffroy. The devil is in the details: idTech 666.

44 [Cantlay 2007] lain Cantlay. High-Speed, Off-Screen Particles

45.[Coffin 2011] Christina Coffin, SPU-Based Deferred Shading in BATTLEFIELD 3 for Playstation 3
46.[Hill 2016] Stephen Hill. LTC Fresnel Approximation.

