
0



1



2



3



We’ve already spoken about a couple of features we developed at GDC earlier this 
year…

4



…but this presentation we’ll focus less on features but more on challenges, 
particularly the challenges of rendering open world games where there is no hiding 
place for many of your graphics developments.

5



6



7



8



9



10



11



This is an image taken during a reference trip to Montana. Notice how vertically down 
the image you can see the colour of the water shift and change, and then the 
refraction present close to the camera at the bottom of the image. We’d like some of 
that!

12



So now we have something that probably looks familiar to a lot of people here. You 
render your water before your transparent objects, having resolved the frame buffer 
beforehand to do some cool refraction effects. Water writes depth, so transparent 
objects don’t appear underwater.

13



But we still have another problem. What about SSLR? We’d really like SSLR on water, 
but it’s applied in the deferred lighting using G-Buffer data. Previously on Far Cry 
games we’d used a planar reflection, but it was difficult to maintain a forward 
rendering pipeline (and often it didn’t match up with what was rendered in the main 
view), and ensuring we only had one water height to generate reflections at was 
always a pain for our art and world building team. Moreover, for Far Cry 5 we wanted 
sloped water for river rapids, so planar reflections would no longer work. Plus, if you 
already have SSLR for your world, why not re-use it for water?

14



So we render a water pre-pass with depth buffer and G-Buffer data BEFORE we do 
our deferred lighting passes. This can then be used by the SSLR.

15



Now for the deferred lighting, we need two depth buffers, one with water and one 
without. Some effects need with water (SSLR) and others need it without (shadows, 
SSAO, lighting).

16



We’ll ignore SSAO and screen-space shadows on water, and although it’ll be 
expensive, we can perform shadows, lighting, fog and atmospheric scattering in 
forward on water.

17



18



This pass is called Depth Multi-Res Processing, the depth buffer goes in, and various 
downsampled and transformed depth buffers come out. This runs after the G-Buffer 
pass, in async compute while the shadows are running.

19



20



16-bit is great as it reduces texture bandwidth needed to read depth, and the 
linearisation reduces ALU.

21



However, we had to pack this in a clever way. We wanted the mip levels all in one 
texture so the SSLR could hierarchically ray trace through it, but a standard packing 
wastes a lot of memory. This is really vital if you want to place the texture in ESRAM. 
We were continually juggling what we could and couldn’t fit in, and we realised this 
texture was wasting a lot of unnecessary space.

22



23



Other effects also use depth buffers, that aren’t listed here – such as half-res depth 
for low-resolution particles, or circle of confusion for depth of field, or motion blur.

As you can see, there’s no obvious path.

24



Depth multi-res processing runs in async compute with the shadows.

25



26



One example of this is driving cars into the water! You don’t want their windscreens 
to disappear.

27



28



29



30



31



32



33



34



35



36



37



38



39



40



41



42



43



Fog inreases

44



45



We blend between the GI key frames as time of day changes to get our final 
sun/moon indirect lighting value. It’s also worth saying that we never have both sun 
and moon at the same time – we take what’s brightest in the scene at any given time.

So this means that GI will only work correctly for that day that we’ve baked.

46



47



48



49



Al these things are presented as options to the artists, to lock/unlock various 
features, so we could easily restore any seasonal progression at any point in the 
future.

50



51



52



53



54



So, for example, if the auto-exposure thinks the current exposure should be 2 EVs, it 
would look up into this curve and retarget to around 2.5 EVs. (2 EVs on the x-axis, 2.5 
EVs on the y-axis).

By the way, this is one example of collaboration at Ubisoft. Projects generally do have 
their own engines, but even if we don’t directly share code we do share a lot of ideas. 
This idea first came from Assassin’s Creed Unity, it was adapted by Watch Dogs 2 and 
that’s how we came to have it on Far Cry. So lots of Ubisoft games share this 
approach. Team work for the win!

55



56



On top of this there is also mesopic vision, which occurs at dawn/dusk and is a blend 
between the two.

57



Graphs drawn with data from http://www.cvrl.org/.

58



The Purkinje effect has an obvious performance cost in its implementation. We could 
also tint to blue light in grading, but artists found it difficult to maintain a good 
separation between a dark blue moon light, and the warm and red colours of local 
lights and fires. The easiest thing to do was tint the moon light blue – and this 
actually mirrors our approach for moon lighting in general, which is follow film and 
treat it as a separate light in the scene. In film they’d tint spot lights blue to mimic 
night lighting.

The downside to this is that we probably aren’t going to handle mesopic vision 
correctly. We’ll probably revisit implementing the Purkinje effect properly in the 
future.

59



60



61



62



Now that we have our single day, and night is looking somewhat like it should, we can 
focus on the biggest problem – which is that when using physical lighting values, it’s 
incredibly difficult to control the range of values we get. The biggest issue being that 
we see too much contrast.

63



64



In an interior looking outside, the outside is far too bright, making gameplay very 
hard.

65



66



There are some incredibly dark areas, as well as some areas that are incredibly bright. 
Both areas are nearly unplayable.

67



68



Common solution that’s proposed

69



70



The sun lights the sky, so if you darken the sun, you darken the sky… which darkens 
the sky light. And of course, darkening the sun reduces the bounce lighting coming 
from the sun.

71



72



Local lights don’t help either.

Art direction want something that looks like this! Having local lights would make it 
look like night, at day.

73



Lighting artists always complained that they couldn’t see local lights at day time. 
Notwithstanding the fact that they were often turned off during the day for 
realisation purposes, the major problems were not placing lights in the light fixture 
(so you could see their effect on the ceiling) (this one is about 75cm lower than it 
should be) and making them too dark. That 1/r^2 falloff is very important to 
understand!

But why did they do that? Why are the lights darker than they should be, and why are 
they out of light fixtures?

74



75



Having no real-time GI feedback enhances the contrast in the scene, and makes 
artists move lights away from the light fixtures.

76



We’ve discovered a real problem right now. Artists aren’t setting their lights up 
correctly, and that leads to unexpected and undesirable behaviour at day time. So 
let’s ignore the day time contrast problem for now and let’s address why lighting 
artist aren’t setting up lights correctly.

77



The reason for that is the enhanced contrast they see at night. We’re going to explore 
this further.

78



79



80



Let’s take a look at a histogram of the scene to see if 4 stops is enough contrast at 
night.

81



82



83



So typically we do diffuse lighting * diffuse albedo, well, this is as if we didn’t do that 
multiply and we just take the luminance of the lighting.

We calculate exposure from lighting luminance only, so this is why we have that 
information.

84



85



86



As I’m looking at a static image while capturing this histogram, the target and current 
exposure are the same. For dynamic images, we adapt over time to the target 
exposure.

87



Also notice that we’re clipping quite significantly in the bottom end. 

88



89



But it gets worse…

90



91



92



Only 13 stops! This isn’t going to be enough to hold the full range of contrast we need 
at night time. And some of those stops will be pretty compressed, so it’s no 
guarantee we’ll have usable detail there.

93



But it’s worth noting that if we move to HDR, suddenly we have more stops available 
to us. Again, it’s unclear how many of those are “useful” but on Far Cry 5 we 
definitely noticed the increase in detail in bright and dark areas compared with SDR 
that made the game much more playable.

94



95



96



Another huge problem at night is how we clamp our light radiuses. Let’s compare 
some lighting values – full moon light is barely brighter than the light from a 500 
lumen bulb 100m away.

97



And the light from a 5000 lumen street light 1000m away is brighter than the sky 
light!

98



99



100



101



This increase of the moon’s brightness is also why we using the Purkinje effect to 
simulate night’s blue look would have been risky for us – we couldn’t necessarily have 
used its correct physical values and it might have influenced too much of the scene.

102



103



Here you can see the moon and local lighting come into the same range, as well as 
contrast in the shadows being reduced. You can also see the blue moon tint as well, 
another difference between the images.

104



105



106



107



108



You can see that our VFX artists chose to calibrate all their effects at day time, where 
exposure is around 16 EVs. Then nothing will happen to their particle effects. As 
exposure decreases, the EV bias linearly decreases. I was hoping they could tolerate 
more of a difference in effect brightness between day and night, but I think that was a 
hard mindset to change.

This is also evidence that night is the real problem, not day. First, I suggested they 
calibrated all effects at night time, then set the bias for day, but instead they went the 
other way around… they sensed that day time felt more “correct” by default.

109



The artist sets EmissiveEV and EmissiveColor, and we bias the EmissiveEV by our 
EffectsEmissiveEVBias. We also have to convert EVs to luminance.

110



Also, please don’t take anything I’ve suggested here as gospel. Maybe you have a 
better idea of how to fix the problems, or a different experience of the issues. Our 
workarounds have enabled us to ship a game and we’re very happy about that, but 
we’re definitely going to look at changing what we do and improving for future 
projects.

111



112



The contrast between interiors and exteriors is really hard for gameplay.

113



114



115



116



Now, this is the ideal algorithm…

117



We can’t afford the good version, sadly.  At low resolution, the extra-cost of the 
bilateral blur is a bit pointless, in fact, it’s going to sharpen haloes that you see rather 
than soften them.

118



119



120



121



122



123



Sadly, you get lots of artefacts from haloes. Some things are darkened when they 
shouldn’t be, some things aren’t darkened when they should be! The door and 
window frames in general also get darker.

124



125



Maybe the haloes are subtle, but we deemed them unacceptable.

126



It’s really fast at a low resolution! But sadly, the haloes make this technique unusable, 
and we can’t afford the performance to make the bilateral version work.

127



If you think about it, the geometry is sort of taking the place of a bilateral blur, 
guiding where you’d want the blur to be.

Or another way, this is like editing a photo in Photoshop – you might manually mark 
the areas you want to adjust. We can do that, but in 3D space, by placing geometry.

128



129



130



131



132



133



134



135



Thanks to Ulrich Haar for coming up with this technique!

136



137



Another way of looking at it is this: crudely, we want to differentiate between indoor 
and outdoor scenes, and sky occlusion is something that gives you that information.

138



Part of the reason we ignore direct lights is that we want an AVERAGE of the lighting, 
and we’d have to calculate something special if we took direct lighting into account.

139



140



141



142



Average means that we remove the directional component. We don’t want that much 
individual detail for local tone mapping.

143



We take that average luminance value, and create a local tone mapping factor from it. 
Note how outside is darker than inside.

144



145



Yes, it’s not a huge difference, but it doesn’t need to be. It solves our gameplay 
problems and our artistic problems, but still keeps a good interior/exterior contrast.

146



147



148



149



150



151



Let’s use an example of someone wanting to blend between white painted wood and 
bare wood.

152



Typically we’d blend albedo, normal, material properties like this…

153



…but what does the mask that we use to blend actually consist of…

154



We’d like to use a unique mask for a building like this, giving the artists a lot of control 
and making the building look realistic, adding weathering features where you really 
think they’d be. However, it’s pretty low resolution.

155



So to supplement it, we provide a detail mask layered on top. Here it’s very much 
related to the structure of the wood, so the paint would say, flake off in the cracks 
between the wooden planks first.

156



But of course, the real question is how to combine these masks in an easy way for 
artists.

157



158



159



In fact, our artists pointed out to use how bad this is! I got this lovely little diagram in 
an e-mail explaining the problem.

160



161



162



163



164



165



166



167



168



169



170



171



Notice the additional MaskOffset parameter. This can be used to bias the unique 
mask, in case we want to turn one material always on or off. That can be animated 
too – for example, to simulate natural-looking weathering over time.

172



173



174



175



176



177



178



179



180



181



182



183



Or perhaps if we present this more abstractly, this is what is happening. If we think 
about it, there is no real need for the two to be the same.

184



This is taken from an emissive shader, where we’d like the artists to optionally set it 
up with the same parameters they’d use for a light – for example, if this was an 
emissive material for a light bulb. They can choose the lighting units, the light source 
radius, the light intensity and cone angle, and we’ll calculate an EmissiveEV value 
from it. The thing is, the shader only ever receives the emissive EV value, it doesn’t 
need to know about any of the UI or setup which is pretty awesome.

185



Another example is from our car paint shader. Rather than set material properties 
directly, artists can use a drop down box to select a matte material, semi-gloss 
material or many more. The Lua script then fills in the output parameters with the 
correct material properties. Yes, there are probably more fancy and elegant ways of 
doing this, but this works and enabled our technical artist to improve the UI for the 
artists with no code or tools support.

186



We can also do more than just set parameters. Our material descriptors also describe 
what render passes to render for a material, like the old DX9 effect system. This is a 
hair shader, where we always render a depth pass, an opaque alpha-test pass and 
then optionally an alpha-blended pass for the edges of the hair. This optional render 
pass can be controlled by the artist in the material, and added via the Lua script. The 
code doesn’t need to know anything about it and this just happens in the Lua script.

187



Or finally, we can have complex logic to select shader variations, like shown here for a 
decal shader. Depending on what tick boxes the artist selects, and what textures they 
provide, we can choose the right shader to use.

188



189



190



It’s also important to ensure that we chase down the real problems. Artists might 
come to us with solutions, like “darken the sun”, but we have to discover the root of 
the issue that they’re having.

191



192



193



194


