


The goal of this presentation is to share with you the lessons that we learned while 

trying to take advantage of ray tracing hardware acceleration in the Unity game 

engine. 

The slides with speaker notes will be available after the presentation if you want to 

look more closely at something (you are reading them)!





You can see this talk as a sequel to the talk « The Road toward Unified Rendering 

with Unity’s High Definition Render Pipeline” presented last year in the same track. 

If you are interested in additional details about the render pipeline in which the work 

presented today was done. Feel free to check our github repository or the slides of 

the previous talk.

https://github.com/Unity-Technologies/ScriptableRenderPipeline

http://advances.realtimerendering.com/s2018/index.htm

https://github.com/Unity-Technologies/ScriptableRenderPipeline


That’s said, let’s look at a video.



This video was part of the « Reality vs illusion » project. 

Some of the shots in the video are real-world footage, others are rendered using our real-
time renderer. The VFX breakdown can be found at: 
https://blogs.unity3d.com/2019/04/11/reality-vs-illusion/ if you want to know exactly what 
is going on during the video.

In collaboration with Light & Shadow, the goal for us was to explore and share what real-time 
ray tracing brings to a game engine-based production.

While I believe that benefits of real-time ray tracing are sometimes questionable. For this 
demo, the quality improvements that we were able to achieve using real time ray tracing are 
clear.

https://blogs.unity3d.com/2019/04/11/reality-vs-illusion/


The results of the project were the video that I showed then and a real-time demo that I will 
show at the end of the presentation

In our journey of exploring real-time ray tracing, we have implemented a good number of 
effects. 



The first one is ray traced ambient occlusion. From our tests, it is always an 

improvement when compared to techniques like screen space techniques, but at a 

non-negligible cost.



The next effect is soft directional shadows. It evaluates the penumbra of an infinite 

disk light and it avoids the artifacts of shadow map filtering techniques (which is 

always nice).



The next one is indirect diffuse or, more commonly in games, GI. It is an alternative to 

light probes or lightmaps which require baking. It can replace, or be combined with 

SSGI.



The next effect is what we call recursive tracing, we use it to render complex 

transparent light paths and that is how we can properly render the head and tail lights 

in the car demo.



The next one is indirect specular, we also call it more commonly reflections in games.



And finally stochastic area shadows.



In this presentation, I’ll be mainly talking about the later two effects. They are the most 

interesting ones and the points that I’ll be making are also valid for the other effects.



One more important thing to mention at this point is that we are going for a hybrid 

render pipeline. By that, I mean that we use rasterization for most of the render 

pipeline and we use ray tracing for specific effects. To compose the final image, we 

combine the result from rasterization and ray tracing.



Before we dive into the details of the changes that ray tracing brings to the render 

pipeline, it's important to understand what it's built on.

In our case, we start from a render pipeline that is a hybrid of deferred and forward. 

By that I mean that it has two types of materials for opaque objects: deferred 

materials (for most of the objects in a scene) and forward materials. 

The forward materials are complex and do not fit into a gbuffer due to their large 

number of parameters (for instance hair, fabric, and eyes shaders in the image on the 

right). This is important to keep in mind for the rest of the presentation.



This a simplified version of the render pipeline.

It starts with an optional prepass, then we have our decal buffer pass. We then render

the gbuffer for our main lighting model (Lit). 

Screen space lighting effects (SSAO, SSR, Contact Shadows) and light structures are 

evaluated, and shadow maps are rasterized. 

When all of that is done, we compute the lighting for the main lighting model (in the 

deferred pass), followed by the lighting of the other models (fabric, hair, eye, etc). 

We evaluate and combine the separable subsurface scattering. Then evaluate the 

sky and the volumetric scattering.

The transparent pipeline is executed after, then we evaluate the color pyramid and we 

finish by distortion, post processing, and finally overlay.



With the pipeline that we just described, we are able to render complex materials 

(here are a few variants of our lit model (left to right: clear coat, anisotropy, specular 

color, iridescence).



But what happens if we add a mirror for instance?



These are two points seen by the camera



And we want to achieve the same lighting evaluation at the point in red for both the 

rasterized and the ray traced pipelines. 



By rendering them the same way, we would get something like this.

A very interesting part of these new ray tracing APIs, is the ability to share the shader

code between rasterization and ray tracing shaders. 

What does that mean for the lighting code for instance?



It means that to a certain extent all the information that is used to evaluate the lighting 

for rasterization should be available in some form to shade an indirect point with ray 

tracing. 



First, this part of the pipeline is evaluated on the final image. So it does not really

matter for our exercise, we can ignore them.



We are thus left with this. Let’s color in red everything that is screen space

information.



That is pretty much the whole pipeline. 

These are problems that we need to solve in order to achieve equivalent quality 

lighting at indirect points with the same shader code. 



Let’s look what we can do for the light structures.

Obviously, you need them when your scene looks like this.



For rasterization, we usually start from a camera and a set of light volumes.



We cull those volumes using the camera frustrum



Then we evaluate the tiled and cluster structures. These are host light lists that we 

use to light the screen space fragments.



The approach for ray tracing is quite similar, we start with our camera and the same 

set of light volumes in our scene.



We do a culling pass to define the set of lights that we need to include in our

structure, this time it is not with with the frustrum, but in proximity of the camera.



Then we build a structure that hosts a light lists per cell like it would for the screen 

space structures. This structure has a fixed resolution and centers around the light 

volumes while staying in the previously defined camera neighborhood.



This allows us to have an equivalent to the rasterization light structures. That said, we 

are not done.

Let’s investigate the other missing data. The next one we are covering is…



Decals. As you can see, they make a pretty big different on an image. 

We need to have a solution for these primitives.



In the render pipeline we are starting from manages decals in two ways

For opaque object, we support decal meshes and decal projectors and handle them

using the decal buffer.

For transparent object, we only support decal projectors and handle them through the 

cluster structure (same structure as for lights).



We now have an equivalent to the rasterization cluster structure. If we limit ourselves

to decal projectors in ray tracing (which is most use cases of decals) we have an 

approach for decals.



That « solves » it for decals, let’s investigate the other missing data.



For our screen space lighting effects (SSAO, SSR, Contact Shadows), we use ray 

marching to evaluate the signals.



The goal here is not to explain what ray marching is. 

Simply to point that it fetches geometry or lighting information of an other point in the 

scene.



And that sounds like a straight translation to ray tracing, right?

Indeed, the first option that we have is to use multibounce to solve these problem. 

This has theoretical advantages, such as solving our problems without baking. 

However, with a similar sample per pixel count it we are evaluating a bigger sample-

space (two additional dimensions, or more depending on what we are doing). This 

means that either we need more samples (a lot more) or we need to filter more 

aggressively (which impacts the overall image quality). 

The other major drawback for this approach is performance, this is not viable for 

games (we will see how expensive this can be later in the presentation).



The second option is to settle for approximations. Such as reflection probes, light 

probes, shadow maps, etc.

For most cases this is enough given the signal that we are evaluating is a rough lobe 

and does not require as much precision as the screen space pixels.



For yellow steps our solution is either multi-bounce or approximations. 

The next thing we are looking at is transparency. It is seems like a good candidate for 

ray tracing right?



It turns out the same problems that we have mentionned for the screen space lighting

are also valid for transparents (multi-dimentionality, performance, filtering). Right now, 

we have solutions but they do not scale for games.

For SSS and volumetric scattering we are still exploring the options.



Now that we have an idea of what information we require, let’s figure out what are the 

constraints that apply on the data.

Let’s take a very simple example, a cornell box.



We can decompose this scene as a set of entities.



These entities have material properties, meshes, and tansforms. 



When we render the scene using rasterization, we have a culling pass that defines 

the set of objects that we should feed to our draw indexed call.



For ray tracing, the idea is the same. However, this time the set of instances is used 

to build the ray tracing acceleration structure.



This presentation is not meant to be a ray tracing API tutorial. So here is a link to the 

most complete API description i’ve seen so far https://microsoft.github.io/DirectX-

Specs/d3d/Raytracing.html

That said, I’d like to refresh two things:

- Raytracing acceleration structures (RAS) are two-leveled BVHs (TLAS and BLAS) 

and they need to be bound to a set of shaders and resources.

- The diagram on the right the that I’ll be using a later in this presentation. It 

represents the shader stages of the raytracing shader pipeline (it is missing the 

callable shaders, but I am referring to them in this presentation). 

https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html


There is couple of options available to us on how to build the RAS.

First of all, we can either do it in the gfx queue or the async queue. That depends on if 

you have other dispatches that you can use to hide the cost of the build before the 

first use of the RAS. It is entirely dependent on your pipeline. Note that if you are 

already making heavy usage of the async queue, you should measure it before using 

the second solution.

The second thing is, as soon as your scene is going to get anything bigger than 

couple cubes, It is going to get very expensive to rebuild/update all the BLAS 

(especially so if you have couple of skinned meshes, or partcile systems), you need to 

define a budget per frame and then, based on your budget, define a prioriy queue for 

your rebuild and updates.

Then you rebuild your TLAS (either way).



If we do this, we endup with a TLAS for the whole scene, which is what you would

want in most cases.



However, sometimes for artistic or performance reasons, we do not want to have the 

same parts of the scene for different effects (or you may have multiple cameras in 

different regions of your virtual world).



Then we have two options: 

- Share the BLASs among multiple TLASs (but that means building multiple TLASs

every frame).

- Build only one TLAS, but use instance masks to exclude objects (but that means

paying the full traversal cost for every ray for the TLAS). 

There is no absolute best. From our measures, the right choice is really content 

dependent. The important piece information here is that you should measure and pick 

the best choice for your configuration.



The next point that I would like to cover is the set of shaders that should be bound to 

the RAS.

In most game engines, users are able to describe extensively their shaders as 

graphs. This is a simple example, it can get much worse than this.



In rasterization, we usually generate a set of shaders from that graph and use them 

for the passes in our pipeline. Each shader usually maps to a single render pipeline 

pass.



The approach we found to be good for ray tracing shaders is pretty similar. From that

graph we generate a set of shaders. Here are the shaders that we settled for and use 

to render the effects previously presented. 

These shaders are classified by the type of the effect meaning that they are 

dependent on the type of signal we want to evaluate at the indirect point. For 

instance:



We use indirect for indirect signals (specular and diffuse). Both effects are different, 

but the information that we compute at indirect point is (almost) the same.



Visibility is used for ambient occlusion, directional shadows, and stochastic area 

shadows. Note that this shader does not need the closest hit shader, which is

significantly cheaper.



Forward is used to evaluate recursive tracing



And i’ll cover the last one « Gbuffer » later in this presentation.



All of that said, let’s go back to where we came from. This is how the render pipeline 

looked initially.



And this is how it looks now if we include everything that we described so far.



Ray traced ambient occlusion replaces SSAO, no major changes here.



Ray traced directional shadow is a new step.



Stochastic Area Shadow is also a new step.



Indirect diffuse now depends on shadow maps and the ray tracing light cluster



Same thing for reflections



Light cluster is here.



And recursive tracing is a replacement to the transparent pipeline for the objects that

are rendered using it.



So far, we have covered all the plumbing that needed to be done to be able to call 

dispatch rays with the right object and the right material. Now let’s figure out what

exactly we should be computing.

We start from the rendering equation, the part in blue is what is usually evaluated

using an integrator, but given that we are going for a hybrid approach, we need to 

rephrase it a bit.



We decompose it as the set of emissive and direct lighting on one side (evaluated

using rasterization) and indirect lighting (evaluated with ray tracing) on the other side.



Let’s focus on indirect lighting first. We can decompose it as the sum of indirect 

specular and indirect diffuse lighting.



To evaluate those terms, we start from the depth buffer.



For every pixel on the screen, the guaranteed information that we have independetly 

of our lighting model is shading normal, smoothness, depth, motion vector, and 

stencil. These are the shared screen space buffers between the prepass and the 

gbuffer pass.



However, these two signals are dependent on the full material we are trying to 

evaluate.



Given the fairly small amount of information we have, we decided to approximate the 

indirect specular as an isotropic ggx lobel, and indirect diffuse as a lambert lobe that 

will allow us to evaluate the lighting with only the screen space data that we have.



Then, based on that information and on the signal that we are trying to evaluate, we 

define a lobe and thus an important sampling profile.



Then the next step is to generate a set of directions to evaluate the lobe.



First, let’s define precisely how we are going to generate our samples.

Let’s suppose our budget is one sample per pixel per effect per frame (if we target 16 

millisecond frames). In reality, our budget is lower than that, but let’s assume that is

what we will have.

If you consider a single sample by its own, there is no notion of coverage. 

The idea is to try to maximize the coverage by accumulating the signal over time but 

also to make sure that neighboring pixels have a different coverage of the sample 

space so when we filter, we end up with enough information to produce a stable 

signal over the frames.

To do that, we use the recent paper “A Low-Discrepancy Sampler that Distributes 

Monte Carlo Errors as a Blue Noise in Screen Space” by Heitz et al. Given the 
stratification properties of the sequence, by iterating over the optimized sobol
sequence through the frames we get very good temporal coverage.



In practice this is what the code looks like. And this is what we use for all the effects

If we target a convergence time of 8 frames (which is what TAA does), so we use the 

8spp version of the algorithm.

Pixel is the screen coordinate of the current pixel.

Sample index is basically the frame index modulo 8

And sample dimension is (0, 1) for the indirect samples and more for additional

dimensions

The full code and data can be found on Eric Heitz’s website here: 

https://eheitzresearch.wordpress.com/762-2/

https://eheitzresearch.wordpress.com/762-2/


Now that we are able to generate our samples, let’s focus on the first effect that I 

wanted to talk about: indirect specular.



As mentioned before, we start from the approximated version that we settled for. One 

option is to go for the full integral.



But the question we want to ask ourselves: is there is a way to do variance reduction, 

achieve faster convergence with less samples and thus have less to denoise.



The approach we have settled for here is the split sum approximation by karis



The equation is decomposed as two terms



The blue term is precomputed and stored in a texture. 

And the red term is evaluated with rasterizarion techniques or ray tracing.

This main problem with this approximation is that it implies a biased estimator. 

However, the bias of this approach has been evaluated as acceptable (this is already

what we do for rasterization).



Let’s start with a final render of the scene



This is what the red term looks like. This is not a bad configuration, most surface are 

kind of smooth, rays will thus go roughly in the same direction



Just to make things a bit more challenging performance-wise, let’s force the 

smoothness of everything to be 0.0 so that rays are completely incoherent.



Everything is solved right? (no), let’s implement reflections!

If you remember correctly in the dxr introduction, i showed this diagram.



So the first important thing to point out is that we want to avoid using any hit shaders 

as much as possible. Given that they are triggered for every potential intersection,

they have a huge impact on the execution time of ray traversal.



Ray generation shader is the entry point of our evaluation. For every pixel in our 

frame, we loop through the number of samples (more than one for the sake of the 

exercise).

Based on that sample index, and the pseudo random number generator that we 

defined earlier, we generate a new direction (in this presentation I am not covering 

importance sampling).



We then trace a ray in our scene and we get a closest intersection (or none, but then 

we just pick the radiance of the sky returned by the miss shader).

At this point we need to evaluate the lighting at the intersection point



Given that we have a valid cluster structure, we can run our lightloop. The shorter the 

lightloop is, the better, but just in case the user wants to have full lighting, he can run

all of it.

An interesting point to raise here is that we are not doing a next event estimation 

based approach. It is probably something we should explore, but it will introduce 

additional variance into our integration and we already have very few samples.



So we loop through the set of lights that were fetched thanks the light cluster, the 

lighting is accumulated and returned to the ray generation shader.

At that point, we accumulate the lighting of this ray, normalize the result and the result 

shown in the screen shot.



Great, we are done, right? 

There is a small problem.



It is very very expensive and not viable for anything close to real-time. 

This is happening because we are messing with the scheduling of ray bvh traversal.



We thus need to try couple things to damage control this.



The first thing we can do is move the lightloop outside of the closest hit shader. The 

approach here is to avoid messing the scheduling of rays bvh traversal. So we need

to reduce the complexity of our closest hit shader

We do pretty much the same thing as the previous slide. For every sample, we 

generate a ray and then trace that ray.



We then get our intersection and this time, instead of evaluating the lighting, we 

compress the material data into a gbuffer.



This is when that fourth effect type shader Gbuffer is going to be useful.

But this raises a couple of questions…



How do we manage the fact that we have multiple lighting models. Here are three 

examples: an eye shader, a fabric shader and our main Lit shader.

Currently we have settled for two options

- A performance mode where we have an automatic fit of all the lighting models into 

our main lighting model

- A quality mode where we do the lighting in the closest hit for the alternative lighting 

models and return it as a single channel of the gbuffer. The main lighting model 

data are still stored in the gbuffer.



Then we return this to the ray generation shader, where we run the lightloop like

before, normalize and we are done, right?



By doing this, we get better performance. It is still bad, but at least we are getting 

somewhere.

The intuition that we are getting from this is: the less we interfere with the ray 

traversal scheduling, the better it is.

Let’s continue following that track and see how it goes. Let’s offload as much as 

possible to compute shaders.



So now we have a compute shader that generate the directions of our rays. Directions 

are stored into a UAV.



Then we call the raytracing shader pipeline.



We read the directions and position from the depth buffer and diretion UAV, build our

ray.

Trace the ray in the scene.



Store the data into a gbuffer in the same way we did in the previous example.

Then this data is returned to the ray generation through the payload. This time, 

instead of evaluating lighting, we store the gbuffer in UAVs.



After that, we run the deferred lighting compute shader the same way we would do for 

rasterization (almost).

And we get the visual same result.



This is a significant improvement. However, we still can do better without 

compromising quality.



Let’s try something that is similar to what was presented at the talk ”It Just Works”: 

Ray-Traced Reflections in ’Battlefield V’ by DICE. Ray binning!



For every pixel on our screen, we have a screen space buffer that holds the origin of 

the rays and another one that holds the direction of the rays. 

These two sets of information are also the two constraints that we want to use for 

binning.



Our approach is, by binning together directions in the same tile, we get the spatial 

constraint that we are looking for.

We can then focus on binning by direction.



A good space to do the binning for directions is the octahedral space. 



Let’s go through the algorithm and let’s do it for a 4x4 tile.



For every pixel in the tile, we have a direction



The octahedral space transforms directions into the unit square [0,1]x[0,1]



We define our set of bins (note that they have a specific order).

Just to make this more readable, let’s use colors to identify our bins.



Then we are able to identify the bin for every direction.



Using an atomic_add we are able to compute two things:

- The number pixels that are in each bin 

- The offset of each pixel in its bin



Then we compute the global list of directions and thus the offset of each bin in this

global list of directions



The output of the binning algorithm are two buffers:

- Pixel coordinates sorted by bins

- The number of valid rays in this tile (16 in our test case, all rays were valid)



And that is what we do for binning.

Here you have the actual code. If you want to check it out or even improve it, see our 

github respository



Now that we have an improvement, let’s change our implementation so that we can

use ray binning



From the previous step, we have already extracted the ray generation (which is 

handy).



Now we can run the ray binning pass that we just described



Then we move to our ray tracing shader pipeline



From the binned pass we are going to read the directions and depth buffer

Then its about the same as the previous step. We trace the ray



We Store the material data into the payload gbuffer

Then output it to UAVs



Then we run our deferred lighting



Almost a 2ms improvement, not bad. This starts to be viable for a real-time 

application, but not quite for games. 

However, remember that the case that we are profiling, is the worst case possible.



Our original case is a more reasonable configuration. It is also acceptable to fallback

to an other indirect specular technique below a given smoothness, 0.6 in this

screenshot



This time is still a bit high. But I think it is acceptable.

Please note that in the additional materials, you will find a table that details all these

timings



Until now, we have not made any quality compromise (except the compression of the 

material data into the gbuffer). But if the time that we have is still too high (which is 

something that is understandable), there is additional things that we have explored to 

reduce the execution time.

You can provide LOD/Raytracing nodes in your shader graphs to reduce the 

complexity of closest hit shaders (thus the cost of ray tracing).

You can also use a simplfiied lighting mode for the deferred lighting (for us takes the 

simplest variant of our main lighting model), this reduces the cost of the lighting pass 

and the memory pressure on the ray tracing shaders (if you managed to export less 

parameters).

You can evalute the effect in half resolution and upscale it (this reduces both ray 

tracing and light evaluation, but increases the filtering).



Based on your content, this may not be enough. 

In the talk that i mentionned earlier, there is couple of additional tricks that can help. 

You can do variable ray tracing (meaning that you can go much lower than half res in 

certain areas) and also mix the effect with ray marching for additional performance.

That covers it for indirect specular.



The next subject that I would like to cover is area shadows



Earlier I said that ray tracing was used to evaluate indirect lighting. The thing is we 

also use it for some parts of direct lighting.

For an area light, this is the formula for evaluating the direct lighting of an area light 

on a given point



If we use this in an offline integrator, this is the result that we would get (and that is

what we are looking for)



Maybe then we should do the same in our case! For a given point…



We generate samples on the light source, evaluate the lighting for these directions,

accumulate, normalize, and get the correct result. 



But again, we need to search for a way to reduce the variance of our integration.



In rasterization, we use the linearly transfomed cosines approximation for evaluating

the radiance of an area light on a given point. 



Using this analytic approximation to evaluate a ratio approximator, we have a pretty

efficient variance reduction method and that is what this paper (“Combining Analytic 
Direct Illumination and Stochastic Shadows” by Heitz et al.) is about.



It is also possible to evaluate an « Occlusion » term by doing the integration of the 

visibility term of the area light. It looks fine.



But it does not correctly capture the visibility term for specular lobes



Just in case you are not familliar with the paper, I am going to do a quick reminider of 

the stochastic area shadow algorithm

We first start by evaluating the analytic value of the lighing

Then we need to produce two buffers: 

- Sn which is the integration of the area light including the visibility term

- Un is the same integration, but without the visibility term



Then the two buffers SN and Un are denoised independently but with the same

kernels.



Then we divide and get our stochastic shadow



Finally, we multiply by the analyitic value and get the final result that we are looking 

for!



That said, let’s go through an other implementation. We start with the ray tracing

shader pipeline



This is a visibility evaluation, we do not use the closest hit shader. We also avoid 

using the any hit shader which drastically impacts the cost of the effect.



At this stage, our entry point is the ray generation shader.

We start by initializing the sampling struct for the light source. Then for every sample 

that we want to evaluate, we generate a new sample, generate the ray, and trace the 

ray.

Then our miss shader notifies us if an intersection was detected. We accumulate Un 

and SN, normalize.



Then the next step is denoising. Separable bilateral filters are not really a thing, but it 

happens to work well enough, so we use that.



So we get the result we are looking for!



But again, same problem as before.

Even if the scene is pretty big (60 million polys), this is quite slow. Note that this

includes filtering. 



We definitily can do better.



The first things that we can do, and that is a quite easy optimisation, is to use a 

simpler shader variant when computing U and Un.



That reduces significantly the register pressure in the ray tracing shader and thus 

gives better performance.



With this simple approximation, we get something that improves the execution time. 

On the other hand, we’ve learned from reflections that offloading to compute shaders 

is a good tip. Let’s try that.



We start with a prepass shader that generates the direction and evaluates the current 

unshadowed lighting



Then we run our ray tracing pipeline



We read the direction from the UAV, recompose the ray that we are currently casting, 

trace it and store the shadowed term.



And then we run our denoiser



It is a significant improvement, but it is still quite expensive and there is room for 

improvement, either on the raytracing part itself or on the denoising.



But again this scene is about 60 million polygons, which is quite heavy.



Alright, at this point I covered pretty much everything that I wanted to talk about. I’d 

like to do a recap of the lessons that we’ve learned and I think are worth sharing



As you’ve seen through this presentation, the intuitive implementation is possible. 

However, it is not viable if you are trying to ship a game or a real-time application with

content that is not trivial. It is important to measure everything that you do with this

API, it can get very expensive quickly.



The second point is that it is very important to try to reduce the variance of whatever

you are integrating, we’ve seen it through the two examples that I covered. You can

use importance sampling, consistent estimators or even biased estimators if you

make sure to compare your result to a reference.



If you have complex forward materials that will not fit into a gbuffer. It is going to be a 

struggle. I covered the solution that we settled for but there are more options.



A good tip is that you should always think of offloading work to compute shaders. 

We’ve seen that either interfering with the ray traversal process is problematic, plus 

compute shaders have features like LDS that allow you to implement more efficently.



The cost of incoherent rays is a game changer. I presented our current approach, but 

I do not think that the problem is solved. 

If you find a better way, please implement and share it!



I am stating the obvious here, but any hit shaders are triggered for every potential

intersection. 

However, it is probably the most effective way to particle systems, cutout materials. 

We thus cannot pretened they do not exist.



You are going to struggle to make ray tracing fit in your render pipeline. We had to 

and you will probably need to rethink part of the pipeline if you integrate it.



Ealier in the presentation, I said that our budget was about 1spp per effect. 

Depending on your content and deployment target, that is probably an over estimation 

(especially if you are going for multiple effects). Thus, you will spend a lot of energy

trying to trace less rays.



Ray tracing is fun, but ray tracing is not the answer to everything. To take the 

example of lighting an indirect point, having shadow maps is a huge advantage, no 

need to spend additional computing time fetching that information.



Sometimes, ray tracing is not worth the trouble. 

If used correctly it may make your image more accurate, but it won’t necessarly be

prettier. Make sure that it fits the concept arts of what you are trying to display.



I would like to finish with the things that we are, or will be, working on in the coming 

months.

We want to explore the ability to mix effects with rasterization variant to reduce the 

cost of effects

SSR with indirect specular

SSGI with indirect diffuse

Contact shadows with ray trace shdows.

We want to expose ray tracing for non rendering applications

We are currently working on a path tracer for reference

And we will be working on skinned mesh and particle support.










