MNVE

o~z
—s
[—
N7
-_= =
- .
<T"
(=
Oz
D=
wme

/7,

Leveraging Real-Time Ray Tracing To
Build A Hybrid Game Engine

SIGGRAPH' 2019

Anis Benyoub

Graphics Engineer

W @Auzaiffe

The goal of this presentation is to share with you the lessons that we learned while
trying to take advantage of ray tracing hardware acceleration in the Unity game
engine.

The slides with speaker notes will be available after the presentation if you want to
look more closely at something (you are reading them)!

‘q

&’ PHOTOGRAPHY &
RECORDING ENCOURAGED

thrive

L sissrapuonny

High Definition Render Pipeline (HDRP)

The Road toward Unified Rendering
with Unity’s High Definition Render
Pipeline

Sébastien Lagarde Evgenii Golubev

Book of the dead

thrive
42 sicrapany

You can see this talk as a sequel to the talk « The Road toward Unified Rendering
with Unity’s High Definition Render Pipeline” presented last year in the same track.

If you are interested in additional details about the render pipeline in which the work
presented today was done. Feel free to check our github repository or the slides of
the previous talk.

https://qithub.com/Unity-Technologies/ScriptableRenderPipeline

http://advances realtimerendering.com/s2018/index.ntm

https://github.com/Unity-Technologies/ScriptableRenderPipeline

That’s said, let’s look at a video.

Improved Image quality

B Y =7

-

thrive
42 sicrapany

This video was part of the « Reality vs illusion » project.

Some of the shots in the video are real-world footage, others are rendered using our real-
time renderer. The VFX breakdown can be found at:
https://blogs.unity3d.com/2019/04/11/reality-vs-illusion/ if you want to know exactly what
is going on during the video.

In collaboration with Light & Shadow, the goal for us was to explore and share what real-time
ray tracing brings to a game engine-based production.

While | believe that benefits of real-time ray tracing are sometimes questionable. For this
demo, the quality improvements that we were able to achieve using real time ray tracing are
clear.

https://blogs.unity3d.com/2019/04/11/reality-vs-illusion/

Improved Image quality

B Y =7

-

Left: real-word footage. Right rendered with Unity

thrive
/é/ SIGGRAPH201

LOS ANGELES « 20 JULY - 1 AUGEST

The results of the project were the video that | showed then and a real-time demo that | will
show at the end of the presentation

In our journey of exploring real-time ray tracing, we have implemented a good number of
effects.

Ray Tracing Effects

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

The first one is ray traced ambient occlusion. From our tests, it is always an
improvement when compared to techniques like screen space techniques, but at a
non-negligible cost.

Ray Tracing Effects

%

B
- -

Directional Shadow

thrive
/:/ SIGGRAPH2019

05 ANGELES « 200

The next effect is soft directional shadows. It evaluates the penumbra of an infinite
disk light and it avoids the artifacts of shadow map filtering techniques (which is
always nice).

Ray Tracing Effects

Directional Shadow

thrive
/é/ SIGGRAI{HZU]B

LOS ANGELES « 20 JULY - 1 AU

The next one is indirect diffuse or, more commonly in games, Gl. It is an alternative to
light probes or lightmaps which require baking. It can replace, or be combined with
SSGil.

Ray Tracing Effects

Ambient Occ Directional Shadow

gu :

"l L

U
v -

Recursive Tracing

thrive
/:/ SIGGRAPﬂZUW

S ANGELES « 20

The next effect is what we call recursive tracing, we use it to render complex
transparent light paths and that is how we can properly render the head and tail lights
in the car demo.

Ray Tracing Effects

Directional Shadow

E_ 1

Recursive Tracing ndirect Specular (Reflections

thrive
/:/ SIGGRAPﬂZ(H?

S ANGELES « 20

The next one is indirect specular, we also call it more commonly reflections in games.

y

Ray Tracing Effects

Directional Shadow

direct Specular (Reflections

thrive

2 sicoRaPH2019

And finally stochastic area shadows.

‘.‘i

Stochastic Area Shadows

Ray Tracing Effects

%

ndirect Specular (Reflections Stochastic Area Shadows

== thrive
42 sicgrapranty

In this presentation, I'll be mainly talking about the later two effects. They are the most
interesting ones and the points that I'll be making are also valid for the other effects.

Ray Tracing Effects

Hybrid (Rasterization/Ray Tracing)

Renderer

%

ndirect Specular (Reflections Stochastic Area Shadows

== thrive
42 sicgrapranty

One more important thing to mention at this point is that we are going for a hybrid
render pipeline. By that, | mean that we use rasterization for most of the render
pipeline and we use ray tracing for specific effects. To compose the final image, we
combine the result from rasterization and ray tracing.

Render Pipeline

Y/

Megacity

Deferred Materials Forward Materials

thrive

gl L

Before we dive into the details of the changes that ray tracing brings to the render
pipeline, it's important to understand what it's built on.

In our case, we start from a render pipeline that is a hybrid of deferred and forward.
By that | mean that it has two types of materials for opaque objects: deferred
materials (for most of the objects in a scene) and forward materials.

The forward materials are complex and do not fit into a gbuffer due to their large
number of parameters (for instance hair, fabric, and eyes shaders in the image on the
right). This is important to keep in mind for the rest of the presentation.

Render Pipeline

Deferred
Lighting

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

This a simplified version of the render pipeline.

It starts with an optional prepass, then we have our decal buffer pass. We then render
the gbuffer for our main lighting model (Lit).

Screen space lighting effects (SSAO, SSR, Contact Shadows) and light structures are
evaluated, and shadow maps are rasterized.

When all of that is done, we compute the lighting for the main lighting model (in the
deferred pass), followed by the lighting of the other models (fabric, hair, eye, etc).

We evaluate and combine the separable subsurface scattering. Then evaluate the
sky and the volumetric scattering.

The transparent pipeline is executed after, then we evaluate the color pyramid and we
finish by distortion, post processing, and finally overlay.

Render Pipeline

, thrive
42 sicgrapanto

With the pipeline that we just described, we are able to render complex materials
(here are a few variants of our lit model (left to right: clear coat, anisotropy, specular
color, iridescence).

y

Render Pipeline

thrive

2 sicoRaPH2019

But what happens if we add a mirror for instance?

Shading an indirect point

thrive
12y ssciapuams

These are two points seen by the camera

Shading an indirect point

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

And we want to achieve the same lighting evaluation at the point in red for both the
rasterized and the ray traced pipelines.

Render Pipeline

thrive

42 sicgrapnanty

By rendering them the same way, we would get something like this.

A very interesting part of these new ray tracing APIs, is the ability to share the shader
code between rasterization and ray tracing shaders.

What does that mean for the lighting code for instance?

Shading an indirect point

Deferred
Lighting

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

It means that to a certain extent all the information that is used to evaluate the lighting
for rasterization should be available in some form to shade an indirect point with ray
tracing.

Shading an indirect point

Lighting

thrive
/é/ SIGGRAPH201

LOS ANGELES « 20 JULY - 1 AUGEST

First, this part of the pipeline is evaluated on the final image. So it does not really
matter for our exercise, we can ignore them.

Shading an indirect point

Light Deferred
Structures Lighting ransparenty
Contact
Shadows

Shadows

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

We are thus left with this. Let’s color in red everything that is screen space
information.

Shading an indirect point

=

Deferred
Lighting

Shadows

thrive
/é/ SIGGRAPHZU]?

LOS ANGELES « 20 JULY - 1 AUGES

That is pretty much the whole pipeline.

These are problems that we need to solve in order to achieve equivalent quality
lighting at indirect points with the same shader code.

Light Structures

thrive

42 sicgrapranty

Let’s look what we can do for the light structures.

Credits Rémy Mae ‘

Obviously, you need them when your scene looks like this.

7

" gl L

thrive

For rasterization, we usually start from a camera and a set of light volumes.

Screen Space Tile and Cluster Structures

thrive

42 sicgrapranty

We cull those volumes using the camera frustrum

Wy 53

|Iuarl

Ay
t; —
e

Ay EN
a

,_E

sV
R

1
T BTy

i

Tile Structure — Debug View Cluster Structure — Debug View

, thrive
42 sicgrapranty

Then we evaluate the tiled and cluster structures. These are host light lists that we
use to light the screen space fragments.

World Space Cluster Structure

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

The approach for ray tracing is quite similar, we start with our camera and the same
set of light volumes in our scene.

World Space Cluster Structure

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

We do a culling pass to define the set of lights that we need to include in our
structure, this time it is not with with the frustrum, but in proximity of the camera.

Then we build a structure that hosts a light lists per cell like it would for the screen
space structures. This structure has a fixed resolution and centers around the light
volumes while staying in the previously defined camera neighborhood.

Shading an indirect point

Deferred
Lighting

Shadows

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

This allows us to have an equivalent to the rasterization light structures. That said, we
are not done.

Let’s investigate the other missing data. The next one we are covering is...

Decals

Decals Off Decals On

thrive
/iJ‘/ SIGGRAI{HZU]‘?‘

LOS ANGELES « 20 JULY - 1 AU

Decals. As you can see, they make a pretty big different on an image.

We need to have a solution for these primitives.

Decals

Opaque Objects Transparent Objects

Decal Buffer Cluster Structure

Decal Meshes + Decal Projectors Decal Projectors

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

In the render pipeline we are starting from manages decals in two ways

For opaque object, we support decal meshes and decal projectors and handle them
using the decal buffer.

For transparent object, we only support decal projectors and handle them through the
cluster structure (same structure as for lights).

Decals

Indirect Point

Decal Projectors

thrive
/iJ/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

We now have an equivalent to the rasterization cluster structure. If we limit ourselves
to decal projectors in ray tracing (which is most use cases of decals) we have an
approach for decals.

Shading an indirect point

o

Deferred
Lighting

Shadows

thrive
/é/ SIGGRAPHZU]?

LOS ANGELES « 20 JULY - 1 AUGES

That « solves » it for decals, let’s investigate the other missing data.

Ray Marching

W,

thrive
/iJ‘/ SIGGRAI{HZU]‘?‘

LOS ANGELES « 20 JULY - 1 AU

For our screen space lighting effects (SSAO, SSR, Contact Shadows), we use ray
marching to evaluate the signals.

Ray Marching

V-

thrive

" gl L

« 20 J0LY - 1 AU

The goal here is not to explain what ray marching is.

Simply to point that it fetches geometry or lighting information of an other point in the
scene.

Multi-Bounce Rays

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

And that sounds like a straight translation to ray tracing, right?

Indeed, the first option that we have is to use multibounce to solve these problem.
This has theoretical advantages, such as solving our problems without baking.
However, with a similar sample per pixel count it we are evaluating a bigger sample-
space (two additional dimensions, or more depending on what we are doing). This
means that either we need more samples (a lot more) or we need to filter more

aggressively (which impacts the overall image quality).

The other major drawback for this approach is performance, this is not viable for
games (we will see how expensive this can be later in the presentation).

Multi-Bounce Rays

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

The second option is to settle for approximations. Such as reflection probes, light
probes, shadow maps, etc.

For most cases this is enough given the signal that we are evaluating is a rough lobe
and does not require as much precision as the screen space pixels.

Shading an indirect point

Deferred
Lighting

Shadows

thrive
/é/ SIGGRAPH201

LOS ANGELES « 20 JULY - 1 AUGEST

For yellow steps our solution is either multi-bounce or approximations.

The next thing we are looking at is transparency. It is seems like a good candidate for
ray tracing right?

Shading an indirect point

Deferred
Lighting

Shadows

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

It turns out the same problems that we have mentionned for the screen space lighting
are also valid for transparents (multi-dimentionality, performance, filtering). Right now,

we have solutions but they do not scale for games.

For SSS and volumetric scattering we are still exploring the options.

Cornell Box @

Cornell Box with stochastic
area shadows and ray
traced indirect diffuse

thrive
42 sicrapany

Now that we have an idea of what information we require, let’s figure out what are the
constraints that apply on the data.

Let’s take a very simple example, a cornell box.

Cornell Box

thrive
/é/ SIGGRAPHZU]?

LOS ANGELES « 20 JULY - 1 AUGES

We can decompose this scene as a set of entities.

Cornell Box

gid: plane,
color: float3(o,
TRS:: o-a

gid: plane, gid: plane,
color: float3(1, 1, > color: float3(l,
TRS: .. TRS: oas

gid: sphere,
color: float

gid: plane, gid: plane, gid: plane,
color: float3(1, 1, ’ color: float3(1, @, f color: float3(1,
TRS: ... TRS: .e» TRS: ...

/é‘/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

These entities have material properties, meshes, and tansforms.

Frustum Culling vs Volume Culling

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

When we render the scene using rasterization, we have a culling pass that defines
the set of objects that we should feed to our draw indexed call.

Frustum Culling vs Volume Culling

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

For ray tracing, the idea is the same. However, this time the set of instances is used
to build the ray tracing acceleration structure.

Ray Tracing API

Ray Tracing Acceleration Structure Ray Tracing Shader Pipeline
(RAS)

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

This presentation is not meant to be a ray tracing API tutorial. So here is a link to the
most complete API description i've seen so far https://microsoft.github.io/DirectX-
Specs/d3d/Raytracing.html

That said, I'd like to refresh two things:

- Raytracing acceleration structures (RAS) are two-leveled BVHs (TLAS and BLAS)
and they need to be bound to a set of shaders and resources.

- The diagram on the right the that I'll be using a later in this presentation. It
represents the shader stages of the raytracing shader pipeline (it is missing the
callable shaders, but | am referring to them in this presentation).

https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html

Building the RAS

GFX Render Queue
GFX Render Queue Async Queue

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

There is couple of options available to us on how to build the RAS.

First of all, we can either do it in the gfx queue or the async queue. That depends on if
you have other dispatches that you can use to hide the cost of the build before the
first use of the RAS. It is entirely dependent on your pipeline. Note that if you are
already making heavy usage of the async queue, you should measure it before using
the second solution.

The second thing is, as soon as your scene is going to get anything bigger than
couple cubes, It is going to get very expensive to rebuild/update all the BLAS
(especially so if you have couple of skinned meshes, or partcile systems), you need to
define a budget per frame and then, based on your budget, define a prioriy queue for
your rebuild and updates.

Then you rebuild your TLAS (either way).

Building the RAS

S ™7 ¥ Gy

thrive
42 sicgrapranty

If we do this, we endup with a TLAS for the whole scene, which is what you would
want in most cases.

Building the RAS

¥ ¥

o] HN BN HEE EE

thrive
/é/ SIGGRAI{HZU]B

LOS ANGELES « 20 JULY - 1 AU

However, sometimes for artistic or performance reasons, we do not want to have the
same parts of the scene for different effects (or you may have multiple cameras in
different regions of your virtual world).

Building the RAS

Multiple TLAS - Shared BLAS

¥ ¥

o] HN BN HEE EE

Instance mask

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Then we have two options:

- Share the BLASs among multiple TLASs (but that means building multiple TLASs
every frame).

- Build only one TLAS, but use instance masks to exclude objects (but that means
paying the full traversal cost for every ray for the TLAS).

There is no absolute best. From our measures, the right choice is really content
dependent. The important piece information here is that you should measure and pick
the best choice for your configuration.

Shader

, thrive
42 sicgrapranty

The next point that | would like to cover is the set of shaders that should be bound to
the RAS.

In most game engines, users are able to describe extensively their shaders as
graphs. This is a simple example, it can get much worse than this.

Pass Shader

Name "DepthOnly™
PackedVaryingsType Vert(AttributesMesh);
oid Frag (PackedVaryingsToPS, out float : SV_Depth);

e Vert(AttributesMesh)
4 Frag (PackedVaryingsToPS, out floatd : SV_Target);

thrive

2/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Sh

Name "GBuffer™
PackedVaryingsType Vert(AttributesMesh);
void Frag (PackedVaryingsToPS, OUTPUT_GBUFFER());

Name “Forward"
PackedVaryingsType Vert(AttributesMesh);
oid Frag(PackedVaryingsToPS, out floatd : SV_Target@);

In rasterization, we usually generate a set of shaders from that graph and use them
for the passes in our pipeline. Each shader usually maps to a single render pipeline

pass.

Effect Type Shader
; Sh

sin(inout: SV_RayPayload, SV_Intersec tionAttributes);

n(inout: SV_RayPayload,

inout: SV_RayPayload, : SV_IntersectionAttributes);

thrive
/iJ‘/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Y
=/
)

t%)]
(inout: SV_RayPayload, : SV_IntersectionAttributes);

vin(inout: SV_RayPayload, : SV_IntersectionAttributes);

t)]

(inout: SV_RayPayload, : SV_IntersectionAttributes);

tMain(inout: SV_RayPayload, : SV_IntersectionAttributes);

The approach we found to be good for ray tracing shaders is pretty similar. From that
graph we generate a set of shaders. Here are the shaders that we settled for and use

to render the effects previously presented.

These shaders are classified by the type of the effect meaning that they are
dependent on the type of signal we want to evaluate at the indirect point. For

instance:

Effect Type Shader

it")]

sin(inout: SV_RayPayload, : SV_IntersectionAttributes);

(inout: SV_RayPayload, : SV_IntersectionAttributes);

- it*))

(inout: SV_RayPayload, : SV_IntersectionAttributes);] (inout: SV_RayPayload, : SV_IntersectionAttributes);
t*)]
n(inout: SV_RayPayload, SV_IntersectionAttributes);

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

We use indirect for indirect signals (specular and diffuse). Both effects are different,
but the information that we compute at indirect point is (almost) the same.

Effect Type Shader

(inout: SV_RayPayload, : SV_IntersectionAttributes);

B8 s

==

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

"N

vin(inout: SV_RayPayload, : SV_IntersectionAttributes);

(inout: SV_RayPayload, : SV_IntersectionAttributes);

(inout: SV_RayPayload, SV_IntersectionAttributes);
t*)]
n(inout: SV_RayPayload, SV_IntersectionAttributes);

Visibility is used for ambient occlusion, directional shadows, and stochastic area
shadows. Note that this shader does not need the closest hit shader, which is

significantly cheaper.

Effect Type Shader

) "N
Main(inout: SV_RayPayload, : SV_IntersectionAttributes); | tHit (inout: SV_RayPayload, : SV_IntersectionAttributes);
")) t*))

sin(inout: SV_RayPayload, : SV_IntersectionAttributes); in(inout: SV RayPayload, : SV_IntersectionAttribut

sibilityDXR"
sder("anyh
sin(inout: SV_RayPayload, : SV_IntersectionAttributes); sin(inout: SV_RayPayload, SV_Inte ctionAttribute

sin(inout: SV_RayPayload, SV_IntersectionAttributes);

thrive
/4 SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Forward is used to evaluate recursive tracing

Effect Type Shader

n(inout: SV_RayPayload, : SV_IntersectionAttributes);

inout RayPayload, : SV_IntersectionAttributes);

: SV_RayPayload, : SV_Inte ionAttributes);

28

-
m®
-

® thrive
2/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

"N

(inout: SV_RayPayload, : SV_IntersectionAttributes);

in(inout

it")]

SV_RayPayload, : SV_IntersectionAttributes);

(inout: SV_RayPayload, : SV_IntersectionAttributes);

(inout

SV_RayPayload, SV_IntersectionAttributes);

And i’ll cover the last one « Gbuffer » later in this presentation.

Render Pipeline

Deferred
Lighting

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

All of that said, let's go back to where we came from. This is how the render pipeline
looked initially.

Hybrid Render Pipeline

thrive
42 sicgrapranty

And this is how it looks now if we include everything that we described so far.

Hybrid Render Pipeline

thrive
42 sicgrapranty

Ray traced ambient occlusion replaces SSAO, no major changes here.

thrive
42 sicgrapranty

Ray traced directional shadow is a new step.

thrive
42 sicgrapranty

Stochastic Area Shadow is also a new step.

thrive
42 sicgrapany

Indirect diffuse now depends on shadow maps and the ray tracing light cluster

thrive
42 sicgrapany

Same thing for reflections

thrive
42 sicgrapany

Light cluster is here.

Hybrid Render Pipeline

i 2N

_—— T

thrive
_/ SIGGRAPH2019

And recursive tracing is a replacement to the transparent pipeline for the objects that
are rendered using it.

Hybrid Pipeline

Ly(x, wo, Ay t) = Le (X, wo, Ay t) + | Jo fr(%, Wiy W, A,) Li(x, wj, A, 8) (w; -

° solved using an integrator (path tracer, photon mapper, etc.)

e Needsto berephrased for our hybrid approach

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

So far, we have covered all the plumbing that needed to be done to be able to call
dispatch rays with the right object and the right material. Now let’s figure out what
exactly we should be computing.

We start from the rendering equation, the part in blue is what is usually evaluated
using an integrator, but given that we are going for a hybrid approach, we need to
rephrase it a bit.

Hybrid Pipeline

L, (x, wy, Ay t) = Le(x, wy, A, t) + Lairect (X, Wy, A, t) |+ Lindirect (X, wy, A, t)

o

evaluated using rasterization (almost)

evaluated using rasterization or raytracing

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

We decompose it as the set of emissive and direct lighting on one side (evaluated
using rasterization) and indirect lighting (evaluated with ray tracing) on the other side.

Hybrid Pipeline

L, (x, wy, Ay t) = Le(x, wy, A, t) + Lairect (X, Wy, A, t) |+ Lindirect (X, wy, A, t)

o

evaluated using rasterization (almost)

evaluated using rasterization or raytracing

Lnul:ru‘l(xw Wy /\~ f) L.\pu'ulur(x~ Wy, /\-, t) t L!Ilffu.w (X Wy /\~ t)

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Let’s focus on indirect lighting first. We can decompose it as the sum of indirect
specular and indirect diffuse lighting.

Ray Generation

«,

thrive
12y ssciapuams

05 ANGELES « 28 JULY - 1 AU

To evaluate those terms, we start from the depth buffer.

Ray Generation

thrive
/iJ‘/ SIGGRAI{HZU]‘?‘

LOS ANGELES « 20 JULY - 1 AU

For every pixel on the screen, the guaranteed information that we have independetly
of our lighting model is shading normal, smoothness, depth, motion vector, and
stencil. These are the shared screen space buffers between the prepass and the
gbuffer pass.

Hybrid Pipeline

lehru'f (xw Wy, /\s t) - L.s’l:u'ulur(xe Wy A? t) t LI{iffll.\'t'(x', Wy y /\s t)

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

However, these two signals are dependent on the full material we are trying to
evaluate.

Hybrid Pipeline

lehru'f (X, Wy, /\~ t) - L.\’pu'ulur(xe Wy A? t) t Lt{lffusr(xs Wy y

L

p
T

N FGD L - f
indirect specular f() H(w indirect (wl ' n) (1“"1 Lmd"'L‘Cl diffuse =™~ JQ

‘n)(v-n)

e |Indirect specularis approximated as an Isotropic GGX lobe
e Indirect diffuse is approximates as a Lambertlobe

e Ambientocclusion affect indirect diffuse

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

L;pdirect (Wi ’

Given the fairly small amount of information we have, we decided to approximate the
indirect specular as an isotropic ggx lobel, and indirect diffuse as a lambert lobe that
will allow us to evaluate the lighting with only the screen space data that we have.

Ray Generation

W,

thrive
/iJ‘/ SIGGRAI{HZU]‘?‘

LOS ANGELES « 20 JULY - 1 AU

Then, based on that information and on the signal that we are trying to evaluate, we
define a lobe and thus an important sampling profile.

Ray Generation

«,

thrive
12y ssciapuams

05 ANGELES « 28 JULY - 1 AU

Then the next step is to generate a set of directions to evaluate the lobe.

Sampling Based Integration

e Our budget is 1spp per effect for a 16ms frame (or less)
e We use spatio-temporal reprojection/accumulation to increase
the coverage
o Spatial coverage improved by “A Low-Discrepancy
Sampler that Distributes Monte Carlo Errors as a Blue
Noise in Screen Space” [Heitz et al 2019]
Temporal coverage improved by iterating

over the optimized Sobol sequence

thrive
/é/ SIGGRAPH201

LOS ANGELES « 20 JULY - 1 AUGEST

First, let’s define precisely how we are going to generate our samples.

Let’s suppose our budget is one sample per pixel per effect per frame (if we target 16
millisecond frames). In reality, our budget is lower than that, but let's assume that is
what we will have.

If you consider a single sample by its own, there is no notion of coverage.

The idea is to try to maximize the coverage by accumulating the signal over time but
also to make sure that neighboring pixels have a different coverage of the sample
space so when we filter, we end up with enough information to produce a stable
signal over the frames.

To do that, we use the recent paper

Sampling Based Integration

sampleIndex
OwenScrambledSequence| sampleDimens ion
ScramblingTile[sampleDimension

value)

> thrive
4 2 SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

In practice this is what the code looks like. And this is what we use for all the effects
If we target a convergence time of 8 frames (which is what TAA does), so we use the
8spp version of the algorithm.

Pixel is the screen coordinate of the current pixel.

Sample index is basically the frame index modulo 8

And sample dimension is (0, 1) for the indirect samples and more for additional
dimensions

The full code and data can be found on Eric Heitz’'s website here:
https://eheitzresearch.wordpress.com/762-2/

https://eheitzresearch.wordpress.com/762-2/

Indirect Specular

> thrive
12 sicurapuenny

LOS ANGELES « 20

Now that we are able to generate our samples, let’s focus on the first effect that |
wanted to talk about: indirect specular.

Indirect Specular

FGD

Lindircct specular ~ fQ 4(w. -n)(v - n) indirect (wi : n) dwi

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

As mentioned before, we start from the approximated version that we settled for. One
option is to go for the full integral.

Indirect Specular

FGD
Lindirccl specular " fQ 4(w. -n)(v - n) indirect (wi : n) dwi

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

But the question we want to ask ourselves: is there is a way to do variance reduction,
achieve faster convergence with less samples and thus have less to denoise.

Indirect Specular

~ FGD
indirect specular "~ fQ 4(w. -n)(v - n)

L indirect (wi : n) dwi

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

The approach we have settled for here is the split sum approximation by karis

Indirect Specular

FGD
Lindirccl specular fQ 4(w (v-n) indirect (wi :

(h-n)D
4(h-n) indirecl(i

specularFGD [,

L

indirect specular ~

thrive
SIGGRAPH2019

LOS ANGELES « 20 J0

The equation is decomposed as two terms

Indirect Specular

FGD
Lindirccl specular fQ 4(w (v-n) indirect (wi :

(h-n)D

L specularFGD [, ahon) Lingirect (

indirect specular ~

e Split Sum approximation [Karis 2013] is useful for variance reduction
° is precomputed

° evaluated with rasterization or ray tracing

thrive Real Shading in Unreal Engine 4 (Brian Karis)

SIGGRAPH2019 .- T Qunity

LOS ANGELES « 20 JULY - 1 AUGEST

The blue term is precomputed and stored in a texture.
And the red term is evaluated with rasterizarion techniques or ray tracing.
This main problem with this approximation is that it implies a biased estimator.

However, the bias of this approach has been evaluated as acceptable (this is already
what we do for rasterization).

Indirect Specular

thrive

42 sicgrapranty

Let’s start with a final render of the scene

Indirect Specular

(h-n)D /
fgg 4(h ‘m) indirect (“"i '

Variable Smoothness

thrive

42 sicgrapranty

This is what the red term looks like. This is not a bad configuration, most surface are
kind of smooth, rays will thus go roughly in the same direction

Indirect Specular

Smoothness =0.0

== thrive
42 sicgrapranty

Just to make things a bit more challenging performance-wise, let’s force the
smoothness of everything to be 0.0 so that rays are completely incoherent.

Indirect Specular

thrive
/é/ SIGGRAPHZU]?

LOS ANGELES « 20 JULY - 1 AUGES

Everything is solved right? (no), let's implement reflections!

If you remember correctly in the dxr introduction, i showed this diagram.

Indirect Specular

thrive
/é/ SIGGRAPHZU]?

LOS ANGELES « 20 JULY - 1 AUGES

So the first important thing to point out is that we want to avoid using any hit shaders
as much as possible. Given that they are triggered for every potential intersection,
they have a huge impact on the execution time of ray traversal.

Indirect Specular

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

(int sampleldx ; sampleldx < numSamples; sampleIdx)
{

newRay GenerateRay();

TraceRay(newRay);

totallLighting newRay.lighting;
}

finalColor totallighting (numSamples) ;

Ray generation shader is the entry point of our evaluation. For every pixel in our
frame, we loop through the number of samples (more than one for the sake of the

exercise).

Based on that sample index, and the pseudo random number generator that we
defined earlier, we generate a new direction (in this presentation | am not covering

importance sampling).

Indirect Specular

(int sampleldx ; sampleldx < numSamples; sampleIdx)
{

newRay GenerateRay();

TraceRay(newRay);

totallLighting newRay.lighting;
}

finalColor totallighting (numSamples) ;

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

We then trace a ray in our scene and we get a closest intersection (or none, but then
we just pick the radiance of the sky returned by the miss shader).

At this point we need to evaluate the lighting at the intersection point

Indirect Specular

Lighting Architecture

e One GPU Light loop in HDRP (Sun, Punctual, Area, IBL, Sky)

ﬁ For each Q
Evaluate @

'
For each Q}

Evaluate 8

Foreach 8

Evaluate @

The Road toward Unified Rendering with Unity’s High Definition Render Pipeline
/; ® thrive Sébastien Lagarde Evgenii Golubev
<4 SIGGRAPH2019 . e i i

ances in ReakTime ndering in Games course 3GRAPH 2019
LOS ANGELES « 20 JULY - 1 AUGEST Adva B 3 R) a J K {1201

Given that we have a valid cluster structure, we can run our lightloop. The shorter the
lightloop is, the better, but just in case the user wants to have full lighting, he can run
all of it.

An interesting point to raise here is that we are not doing a next event estimation
based approach. It is probably something we should explore, but it will introduce
additional variance into our integration and we already have very few samples.

Indirect Specular

(int sampleldx ; sampleldx < numSamples; sampleIdx)
{

newRay - GenerateRay();

TraceRay(newRay);

totallLighting newRay.lighting;
}

finalColor totallighting (numSamples) ;

(int lightIdx ; lightIdx < numlLights; lightIdx)
{

totallighting Evaluatelighting();
}

thrive
/iJ‘/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

So we loop through the set of lights that were fetched thanks the light cluster, the
lighting is accumulated and returned to the ray generation shader.

At that point, we accumulate the lighting of this ray, normalize the result and the result
shown in the screen shot.

Indirect Specular

Smoothness =0.0

thrive

42 sicgrapranty

Great, we are done, right?

There is a small problem.

Indirect Specular
2080Ti@ 1920x1080

Smoothness =0.0

thrive

42 sicgrapranty

Itis very very expensive and not viable for anything close to real-time.
This is happening because we are messing with the scheduling of ray bvh traversal.

Optimization time!

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

We thus need to try couple things to damage control this.

Indirect Specular

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

(int sampleldx ; sampleldx numSamples ; sampleldx)
{
newRay Generate
raceRay(newRay) ;
totallLighting ight p(newRay.gbuffer®, newRay.gbufferl,
)

finalColor totallighting (numSamples);

Ray();

The first thing we can do is move the lightloop outside of the closest hit shader. The
approach here is to avoid messing the scheduling of rays bvh traversal. So we need
to reduce the complexity of our closest hit shader

We do pretty much the same thing as the previous slide. For every sample, we

generate a ray and then trace that ray.

(int sampleldx ; sampleldx numSamples ; sampleldx)

{

Indirect Specular /é({

newRay GenerateRay();
raceRay(newRay) ;
totallLighting ight p(newRay.gbuffer®, newRay.gbufferl,);
)

finalColor totallighting (numSamples);

currentRay.gbuffero
currentRay.gbufferl
currentRay.gbuffer2
currentRay.gbuffer3

thrive
/iJ/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

We then get our intersection and this time, instead of evaluating the lighting, we
compress the material data into a gbuffer.

Effect Type Shader /é‘/{

SV_Intersect H tHitMain(inout: SV_RayPayload, : SV_IntersectionAttributes);
t%)]

nout: SV_RayPayload, : SV_IntersectionAttributes); sin(inout: SV_RayPayload, : SV_IntersectionAttributes);

it"))
(inout: SV_RayPayload, : SV_IntersectionAttributes);
hit*)]
sin(inout: SV_RayPayload, SV_IntersectionAttributes);

Main(inout: SV_RayPayload, : SV_IntersectionAttributes);

thrive
/iJ‘/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

This is when that fourth effect type shader Gbuffer is going to be useful.

But this raises a couple of questions...

Fitting Into GBuffer

currentRay.gbuffero
currentRay.gbufferl
currentRay.gbuffer2
currentRay.gbuffer3

Eye Shader Fabric Shader Lit Shader
Forward Forward Deferred

thrive
/iJ‘/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

How do we manage the fact that we have multiple lighting models. Here are three
examples: an eye shader, a fabric shader and our main Lit shader.

Currently we have settled for two options

- A performance mode where we have an automatic fit of all the lighting models into
our main lighting model

- A quality mode where we do the lighting in the closest hit for the alternative lighting
models and return it as a single channel of the gbuffer. The main lighting model
data are still stored in the gbuffer.

(int sampleldx ; sampleldx numSamples ; sampleldx)

Indirect Specular /é({

{
newRay GenerateRay();
raceRay (newRay) ;
totallLighting ight p(newRay.gbuffer®, newRay.gbufferl,);
)

finalColor totallighting (numSamples);

currentRay.gbuffero
currentRay.gbufferl
currentRay.gbuffer2
currentRay.gbuffer3

thrive
/iJ/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Then we return this to the ray generation shader, where we run the lightloop like
before, normalize and we are done, right?

I/

Indirect Specular

2080Ti@ 1920x1080

Smoothness =0.0

thrive

By doing this, we get better performance. It is still bad, but at least we are getting
somewhere.

The intuition that we are getting from this is: the less we interfere with the ray
traversal scheduling, the better it is.

Let’s continue following that track and see how it goes. Let’s offload as much as
possible to compute shaders.

Indirect Specular

newRay - GenerateRay();
directionUAV - newRay.dir;

v

RayGeneration.compute

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

So now we have a compute shader that generate the directions of our rays. Directions
are stored into a UAV.

Indirect Specular

newRay - GenerateRay();
directionUAV - newRay.dir;

RayGeneration.compute

thrive
/é/ SIGGRAPHZU]?

LOS ANGELES « 20 JULY - 1 AUGES

Then we call the raytracing shader pipeline.

Indirect Specular

newRay - GenerateRay();
directionUAV - newRay.dir;

RayGeneration.compute

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

newRay.dir - directionUAV;

newRay.origin - rea tion(DepthBuffer);
raceRay(newRay) ;

gbufferUAVS - newRay.gbufferd_1_2_3;

We read the directions and position from the depth buffer and diretion UAV, build our

ray.

Trace the ray in the scene.

Indirect Specular

newRay.dir - directionUAV;
newRay.origin - rea tion(DepthBuffer);
raceRay(newRay) ;

gbufferUAVS - newRay.gbufferd_1_2_3;

newRay - GenerateRay();
directionUAV - newRay.dir;

currentRay.gbufferd
currentRay.gbufferl
currentRay.gbuffer2
currentRay.gbuffer3

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Store the data into a gbuffer in the same way we did in the previous example.

Then this data is returned to the ray generation through the payload. This time,
instead of evaluating lighting, we store the gbuffer in UAVs.

Indirect Specular

newRay.dir - directionUAV;

newRay.origin - rea tion(DepthBuffer);
raceRay(newRay) ;

gbufferUAVS - newRay.gbufferd_1_2_3;

B
4 I
%

newRay - GenerateRay(); Tra
directionUAV - newRay.dir;

4

DeferredLighting.compute

= =

gbufferd, gbufferl, gbuffer2, gbufferl gbufferUavs
totallightingUav htloop(gbufferd, gbufferl,) ' numSemples;

v
D ———
RayGeneration.compute

currentRay.gbufferd
currentRay.gbufferl
currentRay.gbuffer2
currentRay.gbuffer3

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

After that, we run the deferred lighting compute shader the same way we would do for
rasterization (almost).

And we get the visual same result.

Indirect Specular
2080Ti@ 1920x1080

Smoothness =0.0

thrive

42 sicgrapranty

This is a significant improvement. However, we still can do better without
compromising quality.

Ray Binning

RAY BINNING

Bin 3011 Bin 3012 Bin 3013

Rays Lookup Local Offsets

0
0
1

"It Just Works": Ray-Traced Reflectionsin 'Battlefield V'
Johannes Deligiannis Jan Schmid EA DICE

thrive
/iJ/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Let’s try something that is similar to what was presented at the talk "It Just Works”:
Ray-Traced Reflections in 'Battlefield V' by DICE. Ray binning!

Ray Binning

Depth Buffer Direction Buffer

> thrive
4 2 SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGES

For every pixel on our screen, we have a screen space buffer that holds the origin of
the rays and another one that holds the direction of the rays.

These two sets of information are also the two constraints that we want to use for
binning.

Ray Binning

Screentiles forbinning Generatedrays in the unit
sphere fora tile

thrive
/é/ SIGGRAI{HZU]B

LOS ANGELES « 20 JULY - 1 AU

Our approach is, by binning together directions in the same tile, we get the spatial
constraint that we are looking for.

We can then focus on binning by direction.

Ray Binning

Generatedrays in the unit Octahedral space forray direction binning

sphere fora tile Survey of Efficient Representations for Independent Unit Vectors
[Cigolle et al 2014]

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

A good space to do the binning for directions is the octahedral space.

Ray Binning

4x4 Pixels Compute Groups

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Let’s go through the algorithm and let’s do it for a 4x4 tile.

Ray Binning

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

For every pixel in the tile, we have a direction

Ray Binning

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

The octahedral space transforms directions into the unit square [0,1]x[0,1]

Ray Binning

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

We define our set of bins (note that they have a specific order).

Just to make this more readable, let’s use colors to identify our bins.

Ray Binning

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Then we are able to identify the bin for every direction.

Ray Binning

N=3
N=4
N=2
N=0
N=3
N=0
N=3
N=1
N=0

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Using an atomic_add we are able to compute two things:

- The number pixels that are in each bin
- The offset of each pixel in its bin

Ray Binning

o n n o non
_x - A a0 o N Wo
a Nn N

O
O
O
O
O=
O
O
@)
O

thrive
/_é/SIGGRAPHZUW N, NN, Qo

LOS ANGELES « 20 JULY - 1 AUGEST

Then we compute the global list of directions and thus the offset of each bin in this
global list of directions

Ray Binning

I 12 N N A 0 0) A G P S

2 0 D 1 0) E D

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

The output of the binning algorithm are two buffers:

- Pixel coordinates sorted by bins
- The number of valid rays in this tile (16 in our test case, all rays were valid)

Ray Binning

MM BINS) ;
NUM_VALID_BINS];

direction - _RaytracingDirectionBuffer[currentCoord];

nt binlndex
TOTAL_NUM_BINS

nt rayBinIndex H
(binIndex TOTAL_NUM_BINS

(gs_binSize[binIndex], 1, rayBinlndex);

. thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

And that is what we do for binning.

Here you have the actual code. If you want to check it out or even improve it, see our
github respository

Indirect Specular

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Now that we have an improvement, let's change our implementation so that we can
use ray binning

Indirect Specular

newRay - GenerateRay();
directionUAV - newRay.dir;

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

From the previous step, we have already extracted the ray generation (which is
handy).

Indirect Specular

newRay - GenerateRay();
directionUAV - newRay.dir;

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Now we can run the ray binning pass that we just described

Indirect Specular

newRay GenerateRay();
directionUAV - newRay.dir;

thrive
42 sicgrapranty

Then we move to our ray tracing shader pipeline

Indirect Specular

newRay.dir - directionUAV;

newRay.origin - rea ition(DepthBuffer);
raceRay (newRay) ;

gbufferUAVS - newRay.gbufferd_1_2_3;

newRay GenerateRay();
directionUAV - newRay.dir;

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

From the binned pass we are going to read the directions and depth buffer

Then its about the same as the previous step. We trace the ray

Indirect Specular

newRay.dir directionUAV;

newRay.origin - rea ition(DepthBuffer);
sceRay (newRay) ;

gbufferUAVS - newRay.gbufferd_1_2_3;

newRay - GenerateRay();
directionUAV - newRay.dir;

currentRay.gbuffer®
currentRay.gbufferl
currentRay.gbuffer2
currentRay.gbuffer3

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

We Store the material data into the payload gbuffer

Then output it to UAVs

Indirect Specular

newRay - GenerateRay();
directionUAV - newRay.dir;

s [

thrive

/;J SIGGRAPH2019

J LOS ANGELES « 20 JULY - 1 AUGUST

Then we run our deferred lighting

currentRay.gbuffer®
currentRay.gbufferl
currentRay.gbuffer2
currentRay.gbuffer3

newRay.dir directionUAV;
newRay.origin - rea

sceRay (newRay) ;
gbufferUAVS - newRay.gbufferd_1_2_3;

(DepthBuffer);

gbufferd, gbufferl, gbuffer2, gbufferd gbufferUAvS
totallightinguav

€ unity

p(gbufferd, gbufferl,) ' numSamples;

Indirect Specular
2080Ti@ 1920x1080

Smoothness = 0.0 l

8.74ms for 1 spp
6.8ms for 1 spp

== thrive
42 sicgrapranty

Almost a 2ms improvement, not bad. This starts to be viable for a real-time
application, but not quite for games.

However, remember that the case that we are profiling, is the worst case possible.

Indirect Specular

Variable'Smoothness (Min Smoothness =0.6)
A

, thrive
42 sicgrapranty

Our original case is a more reasonable configuration. It is also acceptable to fallback
to an other indirect specular technigue below a given smoothness, 0.6 in this
screenshot

Indirect Specular
2080Ti@ 1920x1080

Variable Smoothness (Min Smoothness =0.6)
A

, thrive
42 sicgrapranty

This time is still a bit high. But | think it is acceptable.

Please note that in the additional materials, you will find a table that details all these
timings

/r

Indirect Specular — Additional compromises 2/

Simpler Materials For Ray
Tracing

-
Simplified Lighting Model . . [

1

, thrive
42 sicgrapranty

Until now, we have not made any quality compromise (except the compression of the
material data into the gbuffer). But if the time that we have is still too high (which is
something that is understandable), there is additional things that we have explored to
reduce the execution time.

You can provide LOD/Raytracing nodes in your shader graphs to reduce the
complexity of closest hit shaders (thus the cost of ray tracing).

You can also use a simplfiied lighting mode for the deferred lighting (for us takes the
simplest variant of our main lighting model), this reduces the cost of the lighting pass
and the memory pressure on the ray tracing shaders (if you managed to export less
parameters).

You can evalute the effect in half resolution and upscale it (this reduces both ray
tracing and light evaluation, but increases the filtering).

/r

Indirect Specular — Additional compromises 7

Variable rate tracing

Mixing with ray marching

b ‘3 3
"It Just Works": Raf*T racdd Reflect!ns in ‘Battlefield V'
Johannes Deligiannis Jan Schmid EA DICE

YA

, thrive
42 sicgrapranty

Based on your content, this may not be enough.
In the talk that i mentionned earlier, there is couple of additional tricks that can help.

You can do variable ray tracing (meaning that you can go much lower than half res in
certain areas) and also mix the effect with ray marching for additional performance.

That covers it for indirect specular.

Area Shadow

thrive

42 sicgrapranty

The next subject that | would like to cover is area shadows

Area Shadow

L, (x, wy, Ay t) = Le(x, wy, A, t) + |Lairect (X, Wy, Ay t) |+ Lindirect (X, wy, A, t)

o

= [, BSDF -L; - Vdw

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Earlier | said that ray tracing was used to evaluate indirect lighting. The thing is we
also use it for some parts of direct lighting.

For an area light, this is the formula for evaluating the direct lighting of an area light
on a given point

Area Shadow

L, = [, BSDF - L, -V dw

/W P A

Sponza Scene - Reference

thrive
/é/ SIGGRARVHZ‘U]'?'

LOS ANGELES « 28 JULY - 1 AU

If we use this in an offline integrator, this is the result that we would get (and that is
what we are looking for)

Area Shadow

<

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Maybe then we should do the same in our case! For a given point...

Area Shadow

<

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

We generate samples on the light source, evaluate the lighting for these directions,
accumulate, normalize, and get the correct result.

Area Shadow

<

thrive
/EJ/ SIGGRAPH201

LOS ANGELES « 20 JULY - 1 AUGEST

But again, we need to search for a way to reduce the variance of our integration.

Area Shadow

L, ~ [, BSDF - L, dw
m

with Linearly Transformed Cosines”
Eric Heitz, Jonathan Dupuy, Stephen
Hill and David Neubelt

’ ; “Real-Time Polygonal-Light Shading
Pr—

thrive
/E/ SIGGRAPH2019

05 ANGELES « 20 JuLY

In rasterization, we use the linearly transfomed cosines approximation for evaluating
the radiance of an area light on a given point.

Area Shadow

J, BSDF-L; -V ||

:m

; “Combining Analytic Direct
! [llumination and Stochastic Shadows”
—

Eric Heitz, Stephen Hill and Morgan
McGuire

Sponza Scene - LTC + Stochastic Shadow

thrive
/E/ SIGGRAPH2019

05 ANGELES « 20 JuLY

Using this analytic approximation to evaluate a ratio approximator, we have a pretty
efficient variance reduction method and that is what this paper (
) is about.

Area Shadow - Visibility

L, = [(BSDF - Lidw [, L; - Vdw

thrive
/é/ SIGGRAR'HZ‘U]'?'

LOS ANGELES « 28 JULY - 1 AU

It is also possible to evaluate an « Occlusion » term by doing the integration of the
visibility term of the area light. It looks fine.

Area Shadow - Stochastic

thrive
12y ssciapuams

05 ANGELES « 28 JULY - 1 AU

But it does not correctly capture the visibility term for specular lobes

Area Shadow

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Just in case you are not familliar with the paper, | am going to do a quick reminider of
the stochastic area shadow algorithm

We first start by evaluating the analytic value of the lighing
Then we need to produce two buffers:
- Sn which is the integration of the area light including the visibility term

- Un is the same integration, but without the visibility term

Area Shadow
] |

denoise(Sn)

-
it

thrive
12y sssiapnams e s s ETOISEUR)

LOS ANGELES « 28 JULY - 1 AU

Then the two buffers SN and Un are denoised independently but with the same
kernels.

Area Shadow
=

e -

denoise(Sn)

47 thrive ‘

7 SIGGRAPH2019 i o .

LOS ANGELES « 20 JULY - 1 AUGES

Then we divide and get our stochastic shadow

denoise(Sn) / denoise(Un)

Area Shadow

denoise(Sn) / denoise(Un) LTC + Stochastic Shadow

thrive
/é/ SIGGRAPHZU]?

LOS ANGELES « 20 JULY - 1 AUGES

Finally, we multiply by the analyitic value and get the final result that we are looking
for!

Area Shadow - Stochastic

V>

f.r.@;w-\

thrive

2 SIGGRAPH2019

05 ANGELES « 200

That said, let’s go through an other implementation. We start with the ray tracing
shader pipeline

Area Shadow - Stochastic

Acceleration
Structure
Traversal

thrive
/é/ SIGGRAPHZU]?

LOS ANGELES « 20 JULY - 1 AUGES

This is a visibility evaluation, we do not use the closest hit shader. We also avoid
using the any hit shader which drastically impacts the cost of the effect.

Area Shadow - Stochastic

sq

(int sampleldx
{

sample steSom

ray enerateRay();
sy(ray);
Un « BSOF;
Sn « BSOF * ray.hit;

}

UnUAV -~ Un / numSamples;

SNUAV - Sn numSamples;
Acceleration -

Any Hit
Structure
Traversal

thrive
/iJ‘/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

At this stage, our entry point is the ray generation shader.

We start by initializing the sampling struct for the light source. Then for every sample
that we want to evaluate, we generate a new sample, generate the ray, and trace the
ray.

Then our miss shader notifies us if an intersection was detected. We accumulate Un
and SN, normalize.

Area Shadow - Stochastic

Acceleration
Structure
Traversal

shadowUAV - S

thrive
/iJ‘/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Then the next step is denoising. Separable bilateral filters are not really a thing, but it
happens to work well enough, so we use that.

Area Shadow - Stochastic

> thrive
12 sicurapuenny

05 ANGELES « 20

So we get the result we are looking for!

Area Shadow - Stochastic
60 million polygons 2080Ti @ 1920x1080

12.8 ms for 4 spp

- thrive
12 sicurapuenny

LOS ANGELES « 20

But again, same problem as before.
Even if the scene is pretty big (60 million polys), this is quite slow. Note that this
includes filtering.

Optimization time!

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

We definitily can do better.

Area Shadow - Stochastic

Acceleration
Structure
Traversal

shadowUAV - S

thrive
/iJ‘/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

The first things that we can do, and that is a quite easy optimisation, is to use a
simpler shader variant when computing U and Un.

Area Shadow - Stochastic

Acceleration
Structure
Traversal

shadowUAV - S

thrive
/iJ‘/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

That reduces significantly the register pressure in the ray tracing shader and thus
gives better performance.

Area Shadow - Stochastic

2080Ti @ 1920x1080
12.8 ms for 4 spp

|

) 9.9 ms for 4 spay

> thrive
12 sicurapuenny

LOS ANGELES « 20

With this simple approximation, we get something that improves the execution time.

On the other hand, we've learned from reflections that offloading to compute shaders
is a good tip. Let’s try that.

Area Shadow - Stochastic

sq
sample

ray
directionUAV
UnUAV BSDF;

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

We start with a prepass shader that generates the direction and evaluates the current
unshadowed lighting

Area Shadow - Stochastic

UnUAV BSDF ;

- "’
_——

Prepass.compute

thrive
42 sicgrapranty

Then we run our ray tracing pipeline

newRay.dir - directionUAV;

Area Shadow - Stochastic

sq InitSphericalQuad(); Gaers
-n R cRay (newRay) ;
sample ¥ic mple(); SnUAV - UnSV * newRay.hit;
ray generateRay();
directionUAV ray;
UnUAV BSDF;

(DepthBuffer);

Acceleration
D ——————— Structure

Prepass.compute

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

We read the direction from the UAV, recompose the ray that we are currently casting,
trace it and store the shadowed term.

Area Shadow - Stochastic /;‘/1

newRay.dir - directionUAV;
sq newRay .origin ¥ (DepthBuffer);
Ry 5 A sceRay (newRay) ;

Sempie . SNUAV - UnSV * newRay.hit;

ray - gener:

directionUAV

UnUAV BSDF;

DenoiseH.compute DenoiseV.compute

Acceleration

viseHorizontal(Un); SAs :Ez:;’

eHorizontal(Sn);

thrive
/iJ‘/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

And then we run our denoiser

Area Shadow - Stochastic

2080Ti @ 1920x1080
12.8 ms for 4 spp

|

) 9.9 ms for 4 spay

z 8
5

> thrive
12 sicurapuenny

LOS ANGELES « 20

Itis a significant improvement, but it is still quite expensive and there is room for
improvement, either on the raytracing part itself or on the denoising.

Area Shadow - Stochastic

60 million polygons 2080Ti @ 1920x1080
12.8 ms for 4 spp

|

) 9.9 ms for 4 spay

ms for4 spp

z 8
5

> thrive
12 sicurapuenny

LOS ANGELES « 20

But again this scene is about 60 million polygons, which is quite heavy.

Takeaways

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Alright, at this point | covered pretty much everything that | wanted to talk about. I'd
like to do a recap of the lessons that we’ve learned and | think are worth sharing

Takeaways

V7

e Naive is possible but not viable performance-wise

thrive

" gl L

As you've seen through this presentation, the intuitive implementation is possible.
However, it is not viable if you are trying to ship a game or a real-time application with
content that is not trivial. It is important to measure everything that you do with this
API, it can get very expensive quickly.

Takeaways

e Naive is possible but not viable performance-wise

e Reduce variance with analytic approximation/precomputation

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

The second point is that it is very important to try to reduce the variance of whatever
you are integrating, we've seen it through the two examples that | covered. You can
use importance sampling, consistent estimators or even biased estimators if you
make sure to compare your result to a reference.

Takeaways

e Naive is possible but not viable performance-wise
e Reduce variance with analytic approximation/precomputation

e Complex forward materials are a struggle

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

If you have complex forward materials that will not fit into a gbuffer. It is going to be a
struggle. | covered the solution that we settled for but there are more options.

Takeaways

Naive is possible but not viable performance-wise
Reduce variance with analytic approximation/precomputation
Complex forward materials are a struggle

Offload to compute shaders when possible

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

A good tip is that you should always think of offloading work to compute shaders.
We’'ve seen that either interfering with the ray traversal process is problematic, plus
compute shaders have features like LDS that allow you to implement more efficently.

Takeaways

e Bin rays when distribution requires it

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

The cost of incoherent rays is a game changer. | presented our current approach, but
| do not think that the problem is solved.

If you find a better way, please implement and share it!

Takeaways

e Bin rays when distribution requires it

e Avoid anyhit as much as possible

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

| am stating the obvious here, but any hit shaders are triggered for every potential
intersection.

However, it is probably the most effective way to particle systems, cutout materials.
We thus cannot pretened they do not exist.

Takeaways

e Bin rays when distribution requires it
e Avoid anyhit as much as possible

e Some rasterization paradigms are incompatible with ray tracing

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

You are going to struggle to make ray tracing fit in your render pipeline. We had to
and you will probably need to rethink part of the pipeline if you integrate it.

Takeaways

e For real time, ray budget is extremely tight

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Ealier in the presentation, | said that our budget was about 1spp per effect.
Depending on your content and deployment target, that is probably an over estimation
(especially if you are going for multiple effects). Thus, you will spend a lot of energy
trying to trace less rays.

Takeaways

e For real time, ray budget is extremely tight

e No need to ray tracing everything

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Ray tracing is fun, but ray tracing is not the answer to everything. To take the
example of lighting an indirect point, having shadow maps is a huge advantage, no
need to spend additional computing time fetching that information.

Takeaways

e For real time, ray budget is extremely tight
e No need to ray tracing everything

e [t might not make your image prettier, simply more accurate

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Sometimes, ray tracing is not worth the trouble.

If used correctly it may make your image more accurate, but it won’t necessarly be
prettier. Make sure that it fits the concept arts of what you are trying to display.

Future Improvements

Mix ray traced effects with their rasterized variant
Use ray tracing for non rendering applications
Path tracer for reference

Skinned meshes and particle support

thrive
/é/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

I would like to finish with the things that we are, or will be, working on in the coming
months.

We want to explore the ability to mix effects with rasterization variant to reduce the
cost of effects

SSR with indirect specular

SSGI with indirect diffuse

Contact shadows with ray trace shdows.

We want to expose ray tracing for non rendering applications
We are currently working on a path tracer for reference

And we will be working on skinned mesh and particle support.

Acknowledgement

Unity Graphics Team Eric Heitz (Unity)
Sebastien Lagarde (Unity) Francesco Cifariello Ciardi (Unity)
Kate McFadden (Unity) Antoine Lelievre (Unity)
Dany Ayoub (Unity) Cyril Jover (Unity)
Alexandre Cepisul (L&S) Lewis Jordan (Unity)
Awen Couellan (L&S) Jesper Mortensen (Unity)
Aymeric du Chéné (L&S) Tian Ning (Unity)

Mike Geig (Unity) Melissa Chou (Unity)
Emmanuel Turquin (Unity)

Natasha Tatarchuk (Unity)

Laurent Harduin (Unity)

lonut Nedelcu (Unity)

Arnaud Carré (Unity)

Joel de Vahl (Unity)

Tim Cooper (Unity)

thrive
/EJ/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Questions

== thrive
42 sicgrapranty

Indirect Specular

Small Room Scene

ess override 1.0 - 1SPP

Min Smoothness 0.0

Ray Trace (ms)

Deferred Shading (ms)

Effect Cost (ms)

Prepass + SemiDeferred

Prepass + Deferred

thrive
iJ/ SIGGRAPH2019

LOS ANGELES « 20 JULY - 1 AUGEST

Indirect Specular

thrive

42 sicgrapranty

