


Timothy: Hi! I’m Timothy Lottes and I work at Unity’s Graphics innovation group where 

we’re focused on developing novel algorithms for pushing the boundaries of graphics 

tech. I have worked at AMD prior to this role where I developed FSR 1.0 algorithm. 

Kleber:

Hello everybody! My name is Kleber Garcia. I am a render engineer for unity 

technologies and I worked on the FSR 1 integration to the unity engine, HD 

Rendering Pipeline. 



First part of this talk is the FSR 1.0 algorithm.



The goals for FSR 1.0 is to provide a framework for scaling that fits in Dynamic 

Resolution Scaling.

So that means that scaling can change every frame if it needs to.

The goal here is to reduce frame cost by reducing render resolution whenever 

needed to maintain stable, good performance.

The other main thing about this is that it had to be easy to integrate, easily portable to 

just about anything, wide range of platforms,

and something which adds no temporal artifacts ot the video signal (which normally 

causes unpleasant flickering or ghosting)

So if you use an anti-aliasing which adds no temporal artifacts and you process 

through this algorithm,

it cannot be adding any temporal artifacts which didn’t exist.

Thus for FSR 1.0 the algorithm focused on spatial scaling and spatial sharpening.

The scalar of FSR 1.0 attempts to remove resampling artifacts on existing edges that 

would normally happen during traditional resampling during scaling.

The goal here is to basically make the edge look as if it is native, but not introduce 

new edges that didn’t exist in the source image.



The source code for FSR can be found on GPUOpen.

There are two components to the source code.

This is a portability header.

Then there is an algorithm header.

The algorithm header has a collection of algorithms.

There is approximately 5.

The first one is the scaling algorithm.

It is called EASU, or Edge Adaptive Spatial Upsampling, and that is what I’m going to 

be covering now.



EASU had an aim.

That aim to provide better scaling than the previous solution of using CAS,

which is Contrast Adaptive Sharpening,

followed by hardware scaling that is built into the graphics card.

The hardware scaling built into the graphics card visually looks like horizontal and 

vertical Lanczos.

Lanczos being a resampling algorithm that is a sinc function,

which is a theoretically optimal reconstruction filter,

windowed by another sync function which is truncated.

The windowing enables the function to be computationally feasible.

In order to do better than the hardware scaling,

we had to do something more adaptive.

So EASU focuses on something that is locally adaptive to the properties around the 

pixel.

It is direction, length, and window adaptive.

And thus EASU is probably best described as a locally adaptive elliptical Lanczos-like 

filter.

Due to this adaptability EASU requires input with good anti-aliasing as a base.

It is not an anti-aliasing solution by itself, and thus it does definitely require good AA 

going into it.



EASU starts with a 12-tap kernel window.

So the nearest 12-taps in a circular pattern.

The reason why 12 taps was chosen, instead of 16, is because with 12 taps you only 

need 36 registers for the 32-bit version.

EASU requires an analysis on those 12 taps before it can figure out the filter kernel.

So in order to avoid reading the 12 taps twice, it has to keep all them in registers 

during the full algorithm.

And therefore if you wanted to do anything higher, you’d run out of temporary 

registers for logic.

And the goal being that we want to around or under 64 registers, as that is a good 

upper limit on AMD’s hardware to be able to hide latency.

So for analysis EASU first starts looking at the plus patterns which surround the inner 

2x2 pixel quad.

So if we look at the 12-tap kernel, there is 4 taps in the center,

and for each one of those it needs to compute the analysis for direction and length.

And to do the analysis it is working in luma, and by luma I mean an approximation, 

red plus two green plus blue.

So is it not a complicated luma, it is more of a “get all the channels included so we 

don’t miss anything” approximation.

The analysis done on the 2x2 quad, and this is effectively a form of pass merging.

As the analysis could have been done in a separate pass,

but then one would require two round trips through memory, 

and therefore we don’t want to do that, instead we duplicate a little amount of work in 



the shader,

thus we don’t have to go through memory many times.

Once the analysis is finished we are going to bilinearly interpolate the analysis at the 

position we actually want to filter at.

And that is going to be used to shape the final filter kernel.



For the sampling of this 12-tap pattern,

Vega, Navi, PS4 Pro, PS5 and other hardware that supports packed 16-bit ops can 

find some advantages.

Specifically you can do two 16-bit ops for the cost of one 32-bit op, and you can save 

register space.

AMD’s hardware also supports an A16 modifier to vector memory operations

which enables packed arguments so you can have an {x,y} in one register for the 

coordinates for the load,

and also D16 packed returns so you can get the results of that load or texture fetched 

packed for you so you do not need to pack them later.

If we want to use Structure-of-Array form we can use gather4.

Gather4 will pull all the reds and provide 2 32-bit registers back with all 4 values.

And by doing this we can do packed computation really well without having to swizzle 

things around.

The other way we facilitate this is the 12-tap pattern is using something that is not a 

regular grid for sampling, it is more of a plus pattern.

So that the {X,Y} and {Z,W} pairs have the necessary data for the 12 taps we are 

interested in

If instead a 4x4 pattern was used then the corners would have to be thrown away



For the analysis once the taps are in the edge direction is estimated using a central 

difference.

The central difference does miss single pixel features,

however as we will see later, as feature length becomes very small,

the filter kernel becomes symmetric and non-directional so we don’t care about 

directionality for thin features.

Therefore a diagonal diff is not used, and also a diagonal diff would have been more 

expensive

and we would have had to deal with a half-texel offset which would have made the 

logic a little more complicated.

So once the edge direction is finished, we look at feature length,

and by feature length we are estimating that by looking at the 3 texels in the 

horizontal and 3 texels in the vertical.

And looking what happens with the luma gradient.

If the luma gradient has a reversal, 

for instance starting at black going to white and returning to black,

that would be a “Full Reversal” which is a significant probably of being a thin feature.

Where as if we look at something that has no reversal, 

say going from black to white to white,

that is probably a large feature which we can have a larger filter kernel on.



EASU and color spaces.

Most gaming AA ends up with perceptual even gradients on edges.

And therefore we want the directional analysis to be done in the perceptual 

colorspace.

Perceptual as in sRGB, gamma 2.0, gamma 2.2 or something similar.

This way the computation is not that expensive, 

because if we were to input in linear and convert to perceptual,

we would have to do that 12 times for the 12 taps.

So it is much better and in fact required for good performance 

to factor any linear to perceptual translation into the prior pass, prior to EASU.

You can still run EASU in linear, it just won’t look as good on some content.

The one compromise of course is that if we are running on perceptual,

we are running all the filtering in perceptual,

but as it turns out it is typically acceptable in this case.



So once we have all the analysis finished,

we have a {direction and length} for all the 2x2 quad,

we are going to use the interpolated direction to rotate the filter kernel,

the length to scale the post-rotation kernel scaling on the X and Y axis,

and we are also going to use the length to adjust the kernel window (which I will show 

on another slide).

So in the X axis, we are going to go from no scaling to sqrt(2) based on whether we 

are axis aligned or we are running on the diagonal.

So when we are axis aligned we don’t do any scaling on the X axis,

but when we are on a diagonal we are scaling by sqrt(2) because we can allow a 

larger kernel there without seeing any banding.

The banding would have been created by the negative lobe.

The Y axis has no scaling to double size.

We use the no-scaling for the small features, and that way we end up with a small 

symmetric kernel which does not sample outside the feature itself.

And as the feature gets larger we are using a longer kernel so we can better restore 

the edge.



The EASU kernel itself started as a polynomial approximation to lanczos(2).

Lanczos is an expensive using a {sin(),rcp(),sqrt()} and those are transcendentals

those run at quarter rate depending on your hardware.

And therefore they are best to be avoided if possible.

So instead this is broken down into a base and a window,

similar to the way lanczos is a sync function that is windowed by another sync 

function,

and also because we want the window to be adaptable to the length.

When the window is small, we have a kernel which goes from +/- sqrt(2).

That window has been shortened which truncates the negative lobe.

We don’t get as much sharpening.

We don’t have the ringing and other problems that we would potentially have.

The wide kernel goes from +/- 2, and that kernel has a very strong negative lobe 

which helps restore the edge.



We move on to the deringing step where we take the local 2x2 texel quad,

the min and max of RGB, and we use that to clamp the EASU output.

This removes all the ringing.

This also removes artifacts of the limited 12-tap window.

Therefore when scaling is larger, and you might see the clipping of the window,

it is best to run the reringing step to try to minimize that.



For Engine integration ill be speaking about some of the details and interesting 
choices we had for unity. 



The first step is to introduce you guys to HDRP which is what we did this integration 
of FSR into. HDRP stands for ‘high definition rendering pipeline’ and this is essentially 
our AAA pipeline that we have at unity. This pipeline has a full on post process setup, 
physically based rendering and many advanced GPU algorithms. It can utilize ray 
tracing and more advanced features. For more information feel free to check this 
slide’s links provided here so you can explore what HDRP does.

https://github.com/Unity-Technologies/ScriptableRenderPipeline

http://advances.realtimerendering.com/s2018/index.htm

https://github.com/Unity-Technologies/ScriptableRenderPipeline


In HDRP and as well as other engines, the typical path for rendering pipeline is like 

this. First on the left side you have your rasterization passes; that is everything that is 

Graphics, that is utilizing the rasterizer. This outputs a bunch of surfaces / textures 

that contain information about your scene. For example motion vectors, normals, 

depth, color (as in color resolved for lighting) and other things like depth pyramid. All 

these surfaces are utilized as inputs in your post process pipeline which then outputs 

the final image which goes into your frame buffer. Now it’s important to realize that 

there are two key spots in this pipeline. What we talk about in a dynamic resolution 

setting is that we usually assume that there is a high cost on rasterization particularly 

around high resolution setups. Like 4k or 2160p. 



Usually inside the post processing pipeline there is some effect or some pass that 

takes this low resolution buffer along with some metadata and converts it to the target 

resolution.  For our dynamic resolution scaling setup, we have two points in 

scheduling. 



We have Before Post Processing and After Post Processing. So in this example, 

before post processing is everything that occurs before the post process chain.



So we apply the scaling right after we have our color, depth, motion vectors and 

normals output from our rasterization passes. It is during here that we do our upresing 

and we send that to our post processing chain. The disadvantage of this path is that 

we are actually spending a lot of cost in our post processing chain because it is at full 

resolution. For example depth of field typically becomes a bottleneck on these cases 

when is high quality. An example of a ‘Before Post Process’ upsample pass would be 

something like TAA upsample (Temporal Anti Aliasing Upsample) or checkerboard 

rendering. We have the other side of the coin, which his the after post process 

scaling. What this does is that it runs the post processing pipeline at low resolution 

and is right at the end, right before going to the final pass that it performs the 

upscaling.



It is exactly in this spot where we decided to integrate our FSR, FidelityFX Super 

Resolution algorithm.



It's important to understand that in unity we have two ways of doing aliasing, that is 

ways of looking at a piece of memory so we can rasterize to it in different resolutions. 

The first one is software based. This works in rendering platforms like dx11, dx12, 

Vulkan, Metal and GNM. Essentially all the ones that HDRP supports. The second 

one is hardware base, which works on a subset of rendering APIs that contain more 

advanced features like direct access to resource descriptors and also texture / 

resource aliasing.



For software based, the technique is quite simple. All we do is that during sampling 

time we apply a scale on the x and y axis. We just scaled the uvs of whatever texture 

we are sampling from. We do take care of the borders as you will see in the next 

slide. For rasterization what we do in software base is that we setup a viewport that is 

a subset of the size of final target. In unity we have this setup in our render graph, 

where we usually keep a render target that is the maximum resolution of all the 

cameras within this render target that we create virtual or software views, utilizing the 

software scales.



This is an example of the functions you can use to border your uvs. So you have to be 

very careful when you are upscaling uvs, because you don't want to tap a texel at the 

corner if you are doing bilinear sampling. You want to make sure your UVs are nicely 

clamped so you don’t have that problem. 



For hardware based aliasing, what we do is a bit different. We have a very big heap 

on the C++ side of unity, where we essentially allocate a placed resource. We start 

placing these resources on the heap on demand, depending on the resolution that we 

need on the moment. This is where the aliasing is occuring. The only tricky thing 

about this approach is that is much faster than software based, since we don’t have to 

use multipliers or viewports, we  are actually dealing at the hardware level with that 

native resolution. But the problem is that we are creating descriptors for every 

resolution that we encounter. We have to be very careful on the CPU implementation 

to make sure we recycle these descriptors and we don’t inflate memory and incur in a 

CPU performance cost.



For the chain of our effect, what we do is that we start our uber post process. This is 

everything that outputs after bloom. And after tone mapping. We do a squareroot of 

that target so we output at the squareroot space. What we call the spatial perceptual 

color space, this goes into the EASU algorithm which consumes it and applies the 

upsampler. After it outputs in the upsampler, we make sure we go back to linear 

space and then we apply the RCAS algorithm. The RCAS algorithm improves on 

edging and all the details that were potentially loss before. 



You can see here 2 images where we differentiate between native resolution. This 

would be a 360 crop of a 4k output. 



And in here is with FSR applied, you can see that we recover almost all that loss 

detail. There should be more detailed power point images in the slides attached to 

this presentation. 











The next step is to take care of the extra detail that we lose because of the derivatives 

that we are doing when we are rendering at a lower rasterization resolution. What we 

are doing in this case is pushing the mip bias in all our material textures so that we 

can recover this detail. In this example you can see that we can do quite well by 

recovering most of the detail loss in this texture. The mip bias formula that we use is 

the ratio of the input resolution divided by the output resolution. Then what we do is 

that we take the log base 2 of this ratio and we get a negative mip bias, assuming that 

the input resolution is smaller. All we do is that we push that to our sampler functions. 

We decided to use SampleLodBias which is a function available in dx11 and in vulkan 

platforms. Then we utilize that value and we are able to push that in the software. It 

became quite easy for us. A big advantage that unity has is that we have a pretty 

good distinction of what is a material texture and what is a system texture. Is quite 

easy to differentiate between and only apply the bias to those resources that are 

dependent on that.



Lastly, particles and transparent low resolution so in unity we have a pass that is for 

transparency low resolution. What this does is that it rasterizes transparency to half 

resolution with a down sampled depth buffer. This of course if you are using DRS 

(dynamic resolution scaling) is gonna look very small. You are going to lose a lot of 

quality because you are already at half resolution so if you start downscaling your half 

resolution buffer it’s not gonna look nice. So one of the fixes we have for this pass is 

to actually clamp the min resolution at which it could go and give this control to the 

artist so they can decide which setting in the pipeline is affected. It’s important to 

know that transparent resolution frees us quite a bit to do more expensive, usually 

very low occupancy shadings, such as transparencies that utilize refraction and things 

like that. 



For performance we decided to use a standard 4k scenario. We are utilizing our 

scene in spaceship demo in a PS4 Neo. The resolution is 2160p. For EASU turns out 

we are spending 0.43 ms with an occupancy of 4 waves. For RCAS we have 0.16ms 

with an occupancy of 10 waves. This is the non optimized 32fp path for these 

algorithms. With this we cover pretty much all the pieces we had to touch on the unity 

high definition rendering pipeline. As you can see some of these pieces werent 

challenging, they were quite straightforward to land in the engine. And that's it.







Last but not least, Unity continues hiring graphics researchers, developers, tech 

artists and more world wide. If you found our architecture interesting, come join us, 

help us evolve and improve it further! We are also hiring principal rendering engineers 

for the graphics innovation group.




