Category Archives: Reports

SIGGRAPH 2010 Courses Update

Since my original post about the SIGGRAPH 2010 courses, some of the courses now have updated speaker lists (including mine – regardless of what Eric may think, I’m not about to risk Hyper-Cerebral Electrosis by speaking for three hours straight). I’ll give the notable updates here:

Stylized Rendering in Games

Covered games will include:

  • Borderlands (presented by Gearbox cofounder and chief creative officer Brian Martel as well as VP of product development Aaron Thibault)
  • Brink (presented by lead programmer Dean Calver)
  • The 2008 Prince of Persia (presented by lead 3D programmer Jean-François St-Amour)
  • Battlefield Heroes (presented by graphics engineer Henrik Halén)
  • Mirror’s Edge (also presented by Henrik Halén).
  • Monday Night Combat (presented by art director Chandana Ekanayake) – thanks to Morgan for the update!

Physically Based Shading Models in Film and Game Production

  • I’ll be presenting the theoretical background, as well as technical, production, and creative lessons from the adoption of physically-based shaders at the Activision studios.
  • Also on the game side, Yoshiharu Gotanda (president, R&D manager, and co-founder of tri-Ace) will talk about some of the fascinating work he has been doing with physically based shaders.

On the film production side:

  • Adam Martinez is a computer graphics supervisor at Sony Pictures Imageworks whose film work includes the Matrix series and Superman Returns; his talk will focus on the use of physically based shaders in Alice in Wonderland.  Imageworks uses a ray-tracing renderer, unlike the micropolygon rasterization renderers used by most of the film industry; I look forward to hearing how this affects shading and lighting.
  • Ben Snow is a visual effects supervisor at Industrial Light and Magic who has done VFX work on numerous films (many of them as CG or VFX supervisor) including Star Trek: Generations, Twister, The Lost World: Jurassic Park, The Mummy, Star Wars: Episode II – Attack of the Clones, King Kong, and Iron Man. Ben has pioneered the use of physically based shaders in Terminator Salvation and Iron Man 2, which I hope to learn more about from his talk.

Color Enhancement and Rendering in Film and Game Production

The game side of the course has two speakers in common with the “physically-based shading” course:

  • Yoshiharu Gotanda will talk about his work on film and camera emulation at tri-Ace, which is every bit as interesting as his physical shading work.
  • I’ll discuss my experiences introducing filmic color grading techniques at the Activision studios.

And one additional speaker:

  • While working at Electronic Arts, Haarm-Pieter Duiker applied his experience from films such as the Matrix series and Fantastic Four to game development, pioneering the filmic tone-mapping technique recently made famous by John Hable. He then moved back into film production, working on Speed Racer and 2012 (for which he won a VES award). Haarm-Pieter also runs his own company which makes tools for film color management.

The theoretical background and film production side will be covered by a roster of speakers which (although I shouldn’t say this since I’m organizing the course) is nothing less than awe-inspiring:

  • Dominic Glynn is lead engineer of image mastering at Pixar Animation Studios. He has worked on films including Cars, The Wild, Ratatouille, Up and Toy Story 3. Dominic will talk about how color enhancement and rendering is done at different stages of the Pixar rendering pipeline.
  • Joseph Goldstone (Lilliputian Pictures LLC) is a prominent consulting color scientist; his film credits include Terminator 2: Judgment Day, Batman Returns, Apollo 13, The Fifth Element, Titanic, and Star Wars: Episode II – Attack of the Clones. He has contributed to industry standards committees such as the International Color Consortium (ICC) and the Academy of Motion Pictures Arts and Science’s Image Interchange Framework.
  • Joshua Pines is vice president of color imaging R&D at Technicolor; between his work at Technicolor, ILM and other production companies he has over 50 films to his credit, including Star Wars: Return of the Jedi, The Abyss, Terminator 2: Judgment Day, Jurassic Park, Schindler’s List, Forrest Gump, Twister, Mission: Impossible, Titanic, Saving Private Ryan, The Mummy, Star Wars: The Phantom Menace, The Aviator, and many others. Joshua lead the development of ILM’s film scanning system and has a Technical Achievement Award from the Motion Pictures Academy of Arts & Sciences for his work on film archiving.
  • Jeremy Selan is the color pipeline lead at Sony Pictures Imageworks. He has worked on films including Spider-Man 2 and 3, Monster House, Surf’s Up, Beowulf, Hancock, and Cloudy with a Chance of Meatballs. Jeremy has contributed to industry standards committees such as the Digital Cinema Initiative (DCI), SMPTE, and the Academy of Motion Picture Art and Science’s Image Interchange Framework. At the course, Jeremy will unveil an exciting new initiative he has been working on at Imageworks.
  • The creative aspects of color grading will be covered by Stefan Sonnenfeld, senior vice president at Ascent Media Group as well as president, managing director, and co-founder of Company 3. An industry-leading DI colorist, Stefan has worked on almost one hundred films including Being John Malkovich, the Pirates of the Caribbean series, War of the Worlds, Mission: Impossible III, X-Men: The Last Stand, 300, Dreamgirls, Transformers, Sweeney Todd, Cloverfield, The Hurt Locker, Body of Lies, The Taking of Pelham 1 2 3, Transformers: Revenge of the Fallen, Where the Wild Things Are, Alice in Wonderland, Prince of Persia: The Sands of Time, and many others, as well as numerous high-profile television projects.

Three ways to show off your game at SIGGRAPH 2010

I recently spent a weekend in downtown LA helping the SIGGRAPH 2010 committee put together the conference schedule.  Looking at the end result from a game developer’s perspective, this is going to be a great conference! More details will be published in early May, but you can see the emphasis on games already; of the current (partial) list of courses, over half have high relevance to games.

If you are a game developer, we need your participation to help make this the biggest game SIGGRAPH ever! A few months ago I posted about the February 18th deadline. That deadline is long gone, but several venues are still open. This is your chance to show off not just in front of your fellow game developers, but also before the leading film graphics professionals and researchers. The most relevant venues for game developers are:

  1. Live Real-Time Demos. The Electronic Theater, a nightly showcase of the best computer graphics clips of the year, has long been a SIGGRAPH highlight and the tentpole event of the Computer Animation Festival (which is an official qualifying festival for the Academy Awards). The Electronic Theater is shown on a giant screen in the largest convention center hall, before an audience packed with the world’s top computer graphics professionals and researchers. Last year SIGGRAPH introduced a new event before the Electronic Theater to showcase the best real-time graphics of the year. The submission deadline for Live Real-Time Demos is April 28th (a week and a half away), so time is short! Submitting your game to Live Real-Time Demos is as simple as uploading about 5 minutes of captured game footage (all submitted materials are held in strict confidentiality) and filling out a short online form. If you want your game submitted, please let your producer know about this ASAP; it will likely take some time to get approval.
  2. SIGGRAPH Dailies! (new for 2010) is where the artists get to shine; details here, including cool example presentations from Pixar. Other SIGGRAPH programs present graphics techniques; ‘SIGGRAPH Dailies!’ showcases the craft and artistry with which these techniques are applied. All excellent production art is welcome: characters, animations, level lighting, particle effects, etc. Each artist whose work is selected will get two minutes at SIGGRAPH to show a video clip of their work and tell an interesting story about creating it. The submission deadline for ‘SIGGRAPH Dailies!’ is May 6th. Submitting art to Dailies is just a matter of uploading 60-90 seconds of video and filling out an online form. If your studio is planning to submit more than one or two Dailies, you should use the batch submission process: designate a representative (like an art director or lead) to recruit presentations and get producer approval. Once the representative has a tentative list of submissions, they should contact SIGGRAPH (click this link and select ‘SIGGRAPH Dailies’ from the drop down menu) to give advance warning of the expected submission count. After all entries have video clips and backstory text files, the studio representative contacts SIGGRAPH again to coordinate a batch submission.
  3. Late-Breaking Talks. Although the initial talk deadline is past, there is one more chance to submit talks: the late-breaking deadline on May 6th. SIGGRAPH talks are 20-minute presentations, typically about practical, down-to-earth film or game production techniques. If you are a graphics programmer or technical artist, you must have developed several such techniques while working on your last game. If there is one you are especially proud of, consider submitting a Talk about it; this only requires a one-page abstract (if you happen to have video or additional documentation you can add them as supplementary material). To show the detail expected in the abstract and the variety of possible talks here are five abstracts from 2009: a game production technique, a game system/API, a game rendering technique, a film effects shot, and a film character.

Presenting at one of these forums is a professional opportunity well worth the small amount of work involved. Forward this post to other people on your team so they can get in on the fun!

More on God of War III Antialiasing

Since my recent post discussing the antialiasing method used in God of War III, Cedric Perthuis (a graphics programmer on the God of War III development team) was kind enough to email some additional details on how the technique was developed, which I will quote here:

“It was extremely expensive at first. The first not so naive SPU version, which was considered decent, was taking more than 120 ms, at which point, we had decided to pass on the technique. It quickly went down to 80 and then 60 ms when some kind of bottleneck was reached. Our worst scene remained at 60ms for a very long time, but simpler scenes got cheaper and cheaper. Finally, and after many breakthroughs and long hours from our technology teams, especially our technology team in Europe, we shipped with the cheapest scenes around 7 ms, the average Gow3 scene at 12 ms, and the most expensive scene at 20 ms.

In term of quality, the latest version is also significantly better than the initial 120+ ms version. It started with a quality way lower than your typical MSAA2x on more than half of the screen. It was equivalent on a good 25% and was already nicer on the rest. At that point we were only after speed, there could be a long post mortem, but it wasn’t immediately obvious that it would save us a lot of RSX time if any, so it would have been a no go if it hadn’t been optimized on the SPU. When it was clear that we were getting a nice RSX boost ( 2 to 3 ms at first, 6 or 7 ms in the shipped version ), we actually focused on evaluating if it was a valid option visually. Despite of any great performance gain, the team couldn’t compromise on quality, there was a pretty high level to reach to even consider the option. And as for the speed, the improvements on the quality front were dramatic. A few months before shipping, we finally reached a quality similar to MSAA2x on almost the entire screen, and a few weeks later, all the pixelated edges disappeared and the quality became significantly higher than MSAA2x or even MSAA4x on all our still shots, without any exception. In motion it became globally better too, few minor issues remained which just can’t be solved without sub-pixel sampling.

There would be a lot to say about the integration of the technique in the engine and what we did to avoid adding any latency. Contrarily to what I have read on few forums, we are not firing the SPUs at the end of the frame and then wait for the results the next frame. We couldn’t afford to add any significant latency. For this kind of game, gameplay is first, then quality, then framerate. We had the same issue with vsync, we had to come up with ways to use the existing latency. So instead of waiting for the results next frame, we are using the SPUs as parallel coprocessors of the RSX and we use the time we would have spent on the RSX to start the next frame. With 3 ms or 4 ms of SPU latency at most, we are faster than the original 6ms of RSX time we saved. In the end it’s probably a wash in term of latency due to some SPU scheduling consideration. We had to make sure we could kick off the jobs as soon as the RSX was done with the frame, and likewise, when the SPU are done, we need the RSX to pick up where it left and finish the frame. Integrating the technique without adding any latency was really a major task, it involved almost half of the team, and a lot of SPU optimization was required very late in the game.”

“For a long time we worked with a reference code, algorithm changes were made in the reference code and in parallel the optimized code was being optimized further. the optimized version never deviated from the reference code. I assume that doing any kind of cheap approximation would prevent any changes to the algorithm. There’s a point though, where the team got such a good grip of the optimized version that the slow reference code wasn’t useful anymore and got removed. We tweaked some values, made few major changes to the edge detection code and did a lot of testing. I can’t stress it enough. every iteration was carefully checked and evaluated.”

So it looks like my first impression of such techniques – that they are too expensive to be feasible on current consoles – was not that far off the mark; I just hadn’t accounted for what a truly heroic SPU optimization effort could achieve. I wonder what other graphics techniques could be made fast enough for games, given a similar effort?

FMX and Triangle Game Conference 2010

This post is about two conferences that might not be as familiar to readers of this blog as SIGGRAPH and GDC.

FMX is an annual conference run by the Baden-Württemberg Film Academy, held in Stuttgart, Germany at the beginning of May.  This year is the 15th one for FMX, and the content appears quite promising.

There are a bunch of game talks, including talks about Split/Second, Heavy Rain, Fight Night 4, Alan Wake, Habbo Hotel, two talks on God of War III and one on Arkham Asylum (the last three are repeats of GDC talks).  However, most of the talks relate to film production, including presentations on The Princess and The Frog, Tangled, 2012, Alice in Wonderland, Ice Age 3, Iron Man 2, Clash of the Titans, Sherlock Holmes, District 9, Shutter Island, Planet 51, Avatar, A Christmas Carol, The Imaginarium of Dr. Parnassus, How to Train Your Dragon, and Where the Wild Things Are.  FMX 2010 also has various master classes on the use of various DCC applications and middleware libraries, recruiting talks, presentation of selected SIGGRAPH 2009 papers, and more.  Attendance fees are quite reasonable (200 Euros, 90 for students) so this conference should be good value for readers in Europe who can travel cheaply to Germany.

The Triangle Game Conference is held in Raleigh, North Carolina.  Its name comes from the “research triangle” defined by Raleigh, Durham, and Chapel Hill.  This area is home to several prominent game companies, such as Epic Games, Red Storm Entertainment, and branches of Electronic Arts and Insomniac Games.  I first heard of this conference last year, when it hosted a very good talk by Crytek on deferred shading in CryEngine 3.  This year, the content looks interesting, if a bit mixed; the presentations by Epic and Insomniac seem to be the best ones.  Definitely worth attending if you’re in that area, but I wouldn’t travel far for it.

Morphological Antialiasing in God of War III

Eric wrote a post back in July about a paper called Morphological Antialiasing which had been presented at HPG 2009 (source code for the paper is available here).  The paper described a post-processing algorithm which could smooth out edges as if by magic.  Although the screenshots were impressive, the technique seemed too expensive to be practical for games on current hardware; also there were reportedly bad artifacts when applied to moving images.  For these reasons I didn’t pay too much attention to the technique.  It was reported (including by us) that the game The Saboteur was using this technique on the PS3 but this turned out to be a false alarm.

However, God of War III is actually using Morphological Antialiasing.  I’ve looked closely at the game and the technique they use appears not to exhibit significant motion artifacts; it definitely looks better than the MSAA2X technique it replaced (which was used in the E3 2009 demo).  According to the game’s art director, the technique used “goes beyond” the original paper; this may mean that they improved it in ways that reduce the motion artifacts.

My initial impression that the technique is too expensive did not take into account the impressive horsepower of the PS3’s Cell chip.  After optimization, the technique runs in 20 milliseconds on a single SPU; running it on 5 SPUs in parallel enables it to complete execution in 4 milliseconds.  Most importantly, turning off MSAA saved them 5 milliseconds of GPU time, which on the PS3 is a significant gain (the GPU is most often the bottleneck on PS3 games).

I3D 2010 Report

From Mauricio Vives, our first guess blogger; I thank him for this valuable detailed report.

Written February 26, 2010.

This past weekend I attended the 2010 Symposium on Interactive 3D Graphics and Games, known more simply as “I3D.” It is sponsored by ACM SIGGRAPH, and was held this year in Bethesda, Maryland, just outside Washington. Disclaimer: I work for Autodesk, so much of this report comes from the perspective of a design software developer, but any opinions expressed are my own.

Overview

I3D is a small conference of about 100 people that covers computer graphics and interaction research, principally as it applies to games. I also attended the conference in 2008 near San Francisco, when it was co-chaired by my colleague at Autodesk, Eric Haines.

About half of the attendees are students or professors from universities all over the world, and the rest are from industry, typically game developers. As far as I could tell, I was the only attendee from the design software industry. NVIDIA was well represented both in attendees and presentations, and the other company with significant representation was Firaxis, a local game developer most well known for the Civilization series.

The program has a single track, with all presentations given in the same room. Unlike SIGGRAPH, this means that you can literally see everything the conference has to offer, though it is necessarily more focused. As you will see below, I was impressed with the quality and quantity of material presented.

Since this conference is mostly about games, all of the presented research has a focus on a real-time implementation, often for games running at 60 frames per second. Games have a very low tolerance for low frame rates, but they often have static environments and constrained movement which allows for precomputation and hence high performance and convincing results. Conversely, customers of design software like Autodesk’s products produce arbitrary and changing data, and want the most accurate possible results, so precomputation and approximations are less useful, though a frame rate as low as 5 or 10 fps is often tolerable.

However, an emerging trend in graphics research for games is to remove limitations while maintaining performance, and that was very evident at I3D. The papers and posters generally made a point to remove limitations, in particular so that geometry, lighting, and viewpoints can be fully dynamic, without lengthy precomputation. This is great news for leveraging these techniques beyond games.

In terms of technology, this is almost all about doing work on GPUs, preferably with parallel algorithms. NVIDIA’s CUDA was very well-represented for “GPGPU” techniques that could not use the normal graphics pipeline. With the wide availability of CUDA, a theme in problem-solving is to express as much as possible with uniform grids and throw a lot of threads at it! As far as I could tell, Larrabee was entirely absent from the conference. Direct3D 11 was mentioned only in passing; almost all of the papers used D3D9, D3D10, or OpenGL for rendering.

And a random statistic: a bit more than half of the conference budget was spent on food!

Links

The conference web site, which includes a list of papers and posters, is here.

The Real-Time Rendering blog has a recent post by Naty Hoffman that discusses many of the papers and has links to the relevant author web sites.

Photos from the conference are available at Flickr here. I also took photos at I3D 2008, held at the Redwood City campus of Electronic Arts, which you can find here.

Papers

The bulk of the conference program consisted of paper presentations, divided into a few sessions with particular themes. I have some comments on each paper below, with more on the ones of greater personal interest.

Physics Simulation

Fast Continuous Collision Detection using Deforming Non-Penetration Filters

There is discrete collision detection, where CD is evaluated at various time intervals, and continuous CD, where an exact, analytic result is computed. This paper is about quickly computing continuous CD using some simple expressions that vastly reduce the number of tests between primitives.

Interactive Fluid-Particle Simulation using Translating Eulerian Grids

This was authored by NVIDIA researchers. The goal is a fluid simulation that looks better as processors get more and faster cores, i.e., scalable physics. This is actually a combination of techniques implemented primarily with CUDA, and rendered with a particle system. It allows for very dense and detailed results, and uses a simple trick to have the results continue outside the simulation “box.”

Character Animation

Here there was definitely a theme of making it easier for artists to prepare and animate characters.

Learning Skeletons for Shape and Pose

This is about creating skeletons (bones and weights) automatically from a few starting poses and shapes. The author noted that this was likely the only paper developed almost entirely with MATLAB (!).

Frankenrigs: Building Character Rigs From Multiple Sources

This paper has a similar goal: use existing artist-created character rigs to automatically create rigs for new characters, with some artist control to adjust the results. This relies on a database of rigged parts that an art team probably already has, thus it is a data-driven solution for the time-consuming tasks in character rigging.

Synthesis and Editing of Personalized Stylistic Human Motion

This is about taking a walk animation for a single character, and using that to generate new walk animations for the same character, or transfer them to new characters.

Fast Rendering Representations

Real-Time Multi-Agent Path Planning on Arbitrary Surfaces

Path finding in games is a huge problem, but it is normally constrained to a planar surface. This paper implements path planning on any surface, and does it interactively on both the CPU and GPU using CUDA.

Efficient Sparse Voxel Octrees

Is it time for voxel rendering to make a comeback? These researchers at NVIDIA think so. Here they want to represent a 3D scene similar using voxels with as little memory as possible, and render it efficiently with ray casting. In this case, the voxels contain slabs (they call them contours) that better define the surface. Ray casting through the generated octree is done with using special coordinates and simple bit manipulation. LOD is pretty easy: voxels that are too small are skipped, or the smallest level is constrained, similar to MIP biasing.

This paper certainly had some of the most impressive results from the conference. The demo has a lot of detail, even for large environments, where you think voxels wouldn’t work that well. One of the statistics about storage was that the system uses 5-8 bytes per voxel, which means an area the size of a basketball court could be covered with 1 mm resolution on a high-end NVIDIA GPU. This comprises a lot of techniques that could be useful in other domains, like point cloud rendering. Anyway, I recommend looking at the demo video and if you want to know more, see the web site, which has code and the compiled demo.

On-the-Fly Decompression and Rendering of Multiresolution Terrain

This paper targets GIS and sci-vis applications that want lossless compression, instead of more-common lossy compression. The technique offers variable rate compression, with 3-12x compression in practice. The decoding is done entirely on the GPU, which means no bus bottleneck, and there are no conditionals on decoding, so it can be very parallel. Also of interest is that decoding is done right in the rendering path, in the geometry shader (not in a separate CUDA kernel), and it is thus simple to perform lighting with dynamically generated normals. This is another paper that has useful ideas, even if you aren’t necessarily dealing with terrain.

GPU Architectures & Techniques

A Programmable, Parallel Rendering Architecture for Efficient Multi-Fragment Effects

The problem here is rendering effects that require access to multiple fragments, especially order-independent transparency, which the current hardware graphics pipeline does not handle well. The solution is impressive: build a entirely new rendering pipeline using CUDA, including transforms, culling, clipping, rasterization, etc. (This is the sort of thing Larrabee has promised as well, except the system described here runs on available hardware.)

This pipeline is used to implement a multi-layer depth buffer and color buffer (A-buffer), both fixed size, where fragments are inserted in depth-sorted order. Compared to depth peeling, this method saves on rendering passes, so is much faster and has very similar results. The downside is that it is a slower than the normal pipeline for opaque rendering, and sorting is not efficient for scenes with high depth complexity. Overall, it is fast: the paper quoted frame rates in the several hundreds, but really they should be getting their benchmark conditions complex enough to measure below 100 fps, in order to make the results relevant.

Parallel Banding Algorithm to Compute Exact Distance Transform with the GPU

The distance transform, used to build distance maps like Voronoi diagrams, is useful for a number of image processing and modeling tasks. This has already been computed approximately on GPUs, and exactly on CPUs. This claims to the first exact solution that runs entirely on GPUs. The big idea, as you might expect, is to implement all phases of the solution in a parallel way, so that it uses all available GPU threads. This uses CUDA, and the results are quite fast, even faster than the existing approximate algorithms.

Spatio-Temporal Upsampling on the GPU

The results of this paper are almost like magic, at least to my eyes. Upsampling is about rendering at a smaller resolution or fewer frames, and interpolating the in-between results somehow, because the original data is not available or slow to obtain. Commonly available 120 Hz / 240 Hz TVs now do this in the temporal space. There is a lot of existing research on leveraging temporal or spatial coherence, but this work uses both at once. It takes advantage of geometry correlation within images, e.g. using normals and depths, to generate the new useful information.

I didn’t follow all of the details, but the results were surprisingly free of artifacts, at least for the scenes demonstrated. This could be useful any place where you might want progressive rendering, real-time ray tracing, because rendering full-resolution is very expensive. This technique or some of the ones it references (like this one) could offer much better results than just rendering at a lower resolution and doing simple filtering like is often done for progressive rendering.

Scattering and Light Propagation

Cascaded Light Propagation Volumes for Real-Time Indirect Illumination

This paper almost certainly had the most “street cred” by virtue of being developed by game developer Crytek. Simply put, this is a lattice-based technique for real-time indirect lighting. The most important features are that it is fully dynamic, scalable, and costs around 5 ms per frame. A very quick overview of how it works: render reflective shadow map for each light, initialize the grid with this information to define many secondary light sources, then propagate light through the grid in 30 directions (faces) from each cell into the adjacent 6 cells, approximate the results with spherical harmonics, and render.

To manage performance and storage, this uses cascades (several levels of detail) relative to the viewer, hence the use of the term “cascaded” in the title. The same data and technique can be used to render secondary occlusion, multiple bounces, glossy reflections, participating media using ray marching… just a crazy amount of nice rendering stuff. The use of a lattice has some of its own quality limitations, which they discuss, but nothing too bad for a game. This was a lot to take in, and I did not follow all of the details, but the results were very inspiring. Apparently this will appear in the next version of their game engine, which means consumers will soon come to expect this. Crytek apparently also discussed this at SIGGRAPH last year.

Interactive Volume Caustics in Single-Scattering Media

Caustics is basically “light focusing,” and scattering media is basically “fog / smoke /water,” so this is about rendering them together interactively, e.g. stage lights at a concert with a fog machine, or sunlight under water.  It is fully dynamic, and offers surprisingly good quality under a variety of conditions. It is perhaps too slow for games, but would be fine for design software or a hardware renderer which can take a few seconds to render.

Epipolar Sampling for Shadows and Crepuscular Rays in Participating Media with Single Scattering

This paper has a really long title, but what it is trying to do is simple: render rays of light, a.k.a. “god rays.” Normally this is done with ray marching, but this is still too slow for reasonable images, and simple subsampling doesn’t represent the rays well. The authors observed that radiance along the ray “lines” don’t change much, except for occlusions, which leads to the very clever idea of the paper: construct the (epipolar) lines in 2D around the light source, and sparsely sample along the lines, adding more samples at depth changes. The sampling data is stored as a 2D texture, one row per line, with samples are in columns. It’s fast, and looks great.

NPR and Surface Enhancement

Interactive Painterly Stylization of Images, Videos and 3D Animations

This is another title that direct expresses its goal. Here the “painterly” results are built by a pipeline for stroke generation, with many thousands of strokes per image, which also leverages temporal coherence for animations. It can be used on videos or 3D models, and runs entirely on the GPU. If you are working with NPR, you should definitely look at their site, the demo video, and the referenced papers.

Simple Data-Driven Modeling of Brushes

A lot of drawing programs have 2D brushes, but real 3D brushes can represent and replace a large number of 2D brushes. However, geometrically modeling the brush directly can lead to bending extremes that you (as an artist) usually want to avoid. In this paper from Microsoft Research, the modeling is data-driven, based on measuring how real brushes deform in two key directions. The brush is geometrically modeled with only a few spines having a variable number of segments as bones.

This has some offline precomputation, but most of the implementation is computed at run time. This was one of the few papers with a live demo, using a Wacom tablet, and it was made available for attendees to play with. See an example from an attendee at the Flickr gallery here.

Radiance Scaling for Versatile Surface Enhancement

This is about rendering geometry in such a way the surface contours are not obscured by shading. This is the problem that techniques like the “Gooch” style try to solve. However, the technique in this paper does it without changing the perceived material, sort of like an advanced sharpening filter for 3D models.

It describes a scaling function based on curvature, reflectance, and some user controls, which is then trivially multiplied with the normally rendered image. The curvature part is from a previous paper by the authors, and reflectance is based on BRDF, where you can enhance BRDF components independently. You should definitely have a quick look at the results here.

Shadows and Transparency

Volumetric Obscurance

This is yet-another screen-space ambient occlusion (SSAO) technique. Instead of point sampling, it samples lines (or beams of area) to estimate the volume of sample spheres that are obscured by surrounding geometry. It claims to get smoother results than point sampling, without requiring expensive blurring, and with the performance (or even better) of point sampling. You can see some results at the author’s site here. While it has a few interesting ideas, this may or may not be much better than an existing SSAO implementation you may already have. I found the AO technique in one of the posters (see below) more compelling.

Stochastic Transparency

This was selected as the best paper of the conference. Like one of the earlier papers, this tries to deal with order-independent transparency, but it does it very differently. The author described it as “using random numbers to approximate order-independent transparency.” It has a nice overview of existing techniques (sorting, depth peeling, A-buffer). The new technique does away with any kind of sorting, is fast, and requires fixed memory, but is only approximate. It was demonstrated interactively on some very challenging scenes, e.g. thousands of transparent strands of hair and blades of grass.

The idea is to collect rough statistics about pixels, similar to variance shadow maps, using a combination of screen-door transparency, multisampling (MSAA), and random masks per fragment (with D3D 10.1). This can generate a lot of noise, so much of the presentation was devoted to mitigating that, such as using per-primitive random number seeding to look OK in motion. This is also extended to shadow maps for transparent shadows. Since this takes advantage of MSAA and is parallel, quality and performance will increase with normal trends in hardware. It was described as not quite fast enough for games (yet), but (again) it might be fast enough for other applications.

Fourier Opacity Mapping

The goal of this work is to add self-shadowing to smoke effects, but it needs to be simple to integrate, scalable, and execute in just a few milliseconds. The technique is based on opacity shadow mapping (2001), which stores a transmittance function per texel, but has significant visual artifacts. Here a Fourier basis is used to encode the function, and you can adjust the number of coefficients (samples) to determine the quality / performance tradeoff. Using just a few coefficients results in “ringing” of the function, but it turns out that OK for smoke and hair. The technique was apparently implemented successfully in last year’s Batman: Arkham Asylum.

Normals and Textures

Assisted Texture Assignment

This paper is about making it much easier and faster for artists to assign textures to game environments (levels). It is an ambiguous problem, with limited input to make decisions. The solution relies on adjacency and shape similarities, e.g. two surfaces that are parallel are likely to have the same texture. The artist picks a surface, and related surfaces are automatically chosen. After a few textures are assigned, the system produces a list of candidate textures based on previous choices. There is some preprocessing that has to be performed, but once ready, the system seems to work great. Ultimately this is not about textures; rather, this is an advanced selection system.

LEAN Mapping

“LEAN” is a long acronym for what is essentially antialiasing of bump maps. Without proper filtering, minified bump maps provide incorrect specular highlights: the highlights change intensity and shape as the bump maps gets small in screen space. The paper implements a technique for filtering bump maps using some additional data on the distribution of bumped normals, that can be filtered like color textures. The math to derive this is not trivial, but the implementation is simple and inexpensive.

The results look great in motion, at glancing angles, minified, magnified, and with layered maps. It also has the distinctive property of turning grooves into anisotropy under minification, something I have never seen before.

Efficient Irradiance Normal Mapping

There are a few well-known techniques in games for combining light mapping and normal mapping, but they are very rough approximations of the “ground truth” results. This paper introduces an extension based on spherical harmonics, but only over a hemisphere, that significantly improves the quality of irradiance normal mapping. Strangely, no mention was made of performance, so I would have to assume that it runs as fast as the existing techniques, just with different math.

Posters

The posters session was preceded by a brief “fast forward” presentation with each author having a minute to describe their work. There were about 20 posters total, and I have comments on a few of them.

Ambient Occlusion Volumes (link)

This is a geometric solution to the problem of rendering convincing ambient occlusion, compared to the screen-space (SSAO) techniques which are faster, but less accurate. The results are very close to ray-traced results, and while it appears to be too slow for games right now (about 30 ms to render), that will change with faster hardware.

Real Time Ray Tracing of Point-based Models (link)

The title says it all. I didn’t look into this too much, but I wanted to highlight it because it is getting cheaper to get point cloud data, and it would be great to be able to render that data with better materials and lighting.

Asynchronous Rendering

This poster has an awfully generic name, but it is really about splitting rendering work between a server and a low-spec client, like a mobile phone. In this case, the author demonstrated precomputed radiance transfer (PRT) for high-quality global illumination, where the heavy processing was done on the server, while still allowing the client (here it was an iPhone) to render the results and allow for interactive lighting adjustments. For me the idea alone was interesting: instead of just having the server or client do all the work, split it in a way that leverages the strengths of each.

Speakers

A few academic and industry speakers were invited to give 90-minute presentations.

Biomechanical and Artificial Life Simulation of Humans for Computer Animation and Games

The keynote address was given by Demetri Terzopoulos of UCLA. I was not previously familiar with his work, but apparently he has a very long resume of work in computer graphics, including one of the most cited papers ever. The talk was an overview of his research from the last 15 years on modeling human geometry, motion, and behavior. He started with the face, then the neck, and then the entire body, each modeled in extensive detail. His most recent model has 75 bones, 846 muscles, and 354,000 soft tissue elements.

The more recent work is in developing intelligent agents in urban settings, each with a set of social behaviors and goals, though with necessarily simple physical models. The eventual and very long-term goal is to have a full-detail physical model coupled with convincing and fully autonomous behavior.

Interactive Realism: A Call to Arms

The dinner talk was given by Peter Shirley of NVIDIA. This was the “motivational” talk, with his intended goal of having computer graphics that are both pleasing and predictive. Some may think that we have already reached the point of graphics that are “good enough,” but he disagrees. He referenced recent games and research to point out the areas that he feels needs the most work. From his slides, these are:

  • Volume lighting / shadowing
  • Indoor-outdoor algorithms
  • Coarse / fine lighting
  • Artist / designer-in-the-loop
  • Motion blur and defocus blur
  • Material models
  • Polarization
  • Tone mapping

He concluded with some action items for the attendees, which includes reforming the way computer graphics research is done, and lobbying for more funding. From the talk and subsequent Q&A, it looks like a lot of people are not happy with the way SIGGRAPH handles papers, a world I know very little about.

The Evolution of Precomputed Lighting for Games

The capstone address was given by Peter-Pike Sloan of Disney Interactive Studios. He presented essentially a history of precomputed lighting for games from Quake, to Halo 3, and beyond. Such lighting trades off flexibility for quality and performance, i.e. you can get very convincing and fast lighting with some important restrictions. This turned out to be a surprisingly large topic, split mostly between techniques for static and dynamic elements, like environments and characters, respectively.

You may wonder why this is relevant beyond a history lesson, the trend in research being for techniques to not require precomputation, and that includes lighting. But precomputed lighting is still relevant for low-end hardware, like mobile devices, and cases where artist control is more important than automated results.

Wrap It Up!

Thanks for making it this far. As you can see, it was a very busy weekend! Like the 2008 conference, this was a great opportunity to see the state-of-the-art in computer graphics and interaction research in a more intimate setting. I hope this was useful, and please reply here if you have any comments.

Ken Torrance’s accomplishments

Ken Torrance, 69, passed away unexpectedly February 15. His last name should be familiar to many of you: Torrance-Sparrow and Cook-Torrance are two reflection models that bear it.

He was a professor in the mechanical and aerospace engineering department at Cornell. Don Greenberg, head of the Program of Computer Graphics at Cornell, was his long-time collaborator and was one person who spoke today at a gathering in remembrance of Ken. He talked about how Dr. Torrance was not a man who blew his own horn, how he was humble about his contributions. The main thing for Ken was that he loved to teach. Some early accomplishments Don noted (with my own additions):

  • Published in 1967, Torrance-Sparrow was based on his PhD work (Sparrow was his advisor). It is a reflection model that was based on experimental data combined with theory. Microfacet theory had been around since the 1920’s, but had problems, such as going to infinity at an incidence angle of 90 degrees. Torrance-Sparrow describes off-specular peaks, i.e., the phenomenon where the brightest reflection off of roughened metal is not in the reflection direction. It’s worth noting that Blinn’s reflection model is directly derived from this work, putting it into vector form.
  • Cook-Torrance, in 1981, should be more familiar to computer graphics people, coalescing ideas about microfacet distribution and Fresnel reflectance and bringing in the idea of wavelength dependence. Rob Cook is currently the VP of Software Engineering at Pixar.
  • The idea of using heat transfer theory in computer graphics is Torrance’s idea, along with Greenberg; another great example of how cross-pollination between fields can yield fantastic results. The paper by Goral et al. (including Ken) in 1984 describes computing diffuse-diffuse interaction. It introduced two concepts to the field that have become key elements of global illumination theory and practice: form factors and radiosity. What’s interesting to me in this paper is that it includes something somewhat rare in our field, an explanation of an experimental setup to compare computer-generated results with reality. It’s the paper where the Cornell Cube was first used (empty! It made visibility computations ignorable). If you want to try a form of this experiment, look here.
  • I could go on and on, the themes being simulating light transport and materials along with physically measuring BRDFs and illumination spectral distributions—theory and experiment. You can see some other papers listed here. Here’s the measurements lab in 1995. SIGGRAPH recognized his accomplishments in 1994, giving him the Computer Graphics Achievement Award that year.

I had a passing acquaintance with Professor Torrance over the years. I was working on ray-traced shadows, not radiosity, during my time at the Cornell PCG lab from 1983-85. I recall seeing a photo on a monitor in the lab one night and asking Cindy Goral about it, why it was scanned in. She told me it was an image she had generated with radiosity techniques, which was utterly flabbergasting to me. Dr. Torrance was a smart guy and a nice person, but I didn’t know him much beyond that. All I knew was that he was helping Cindy, and in his life many other students, make astounding images.

If you have a personal memory of Ken, you may wish to leave a note in the family’s guestbook.

Efficient Sparse Voxel Octrees

I mentioned this I3D 2010 paper in a blog post a while ago, but there was no preprint for it at the time.  Now the floodgates of information have been opened with the preprint, a video, and an extended paper all available on the first author’s website.  The source code has also been open-sourced with the Apache 2.0 license and posted on Google Code.

I’m not that familiar with previous work in the area, so I don’t know how it stacks up against e.g. Gigavoxels; if anyone has any insight please let me know.  One interesting detail from the paper was the way they enhance each cubical voxel with a pair of bounding planes, which they call contours.

They show that the data structure enables casting rays significantly faster than against a triangle model of equivalent complexity.  Unfortunately, it appears to still be slower than rendering the triangles the “old-fashioned way”.  The technique also requires post-filtering since it does not allow for filtering of color and normal information (which is effectively point-sampled).  Finally, building the data structure takes a fair bit of time, making this not particularly well-suited for dynamic scenes.

C++, Baby

I was catching up on the Communications of the ACM, and noticed this article, Computer Science in the Conceptual Age. The “catch your eye” text on one page was: “Programming interns/job seekers from our program Spring 2009 (35 interviewed in the game industry) found no companies administering programming tests in Java.”

There are other chewy bits, such as: “The USC experience is that 100% of its students interviewed for programming positions are given three-to-four-hour-long programming tests, with almost all companies administering the tests in C++.”

Also, this: “The game industry will also tell you that it wants the first four programming classes in C++, not Java, according to M.M. McGill and my own private communications with directors of human resources in major game-development companies.”

One final morsel: “Many game companies say they will not interview or hire someone whose first programming language is Java.”

Wow, that last one’s harsh, especially since my experience with two teenage sons (one in high school, the other a freshman computer science major) is that Java is the norm for the first “real” language taught (I don’t count Scheme as a real, “you’ll get paid programming in it” type of language). I don’t think I’d rule someone out for knowing Java first, though having gone from C++ to Java and then back, the transition from Java to C++ is like being thrown out of the promised land: you suddenly again spend half your time messing with memory in one form or another. C# and Java are darn productive in that way. And, no, for me at least, those auto-pointer classes in C++ never quite seem to work—they need a different sort of discipline I don’t appear to have. I also love that my first Java program, from 1997, still works on the web; some of my C++ programs from back then won’t run on Vista or Windows 7 because the WinG DLLs are not a part of those operating systems (thanks, Microsoft).

Nonetheless, the article’s right: at Autodesk we’ve dabbled with Java and C#, I’ve seen Python used for UI control around the fringes of a program, but the heart of client-side graphical programs is almost always C++ (or isn’t, with regrets and cancellation often soon following—been there myself, though Java was only a little bit to blame, to be fair). Also, XNA, which uses C#, does not have a 64 bit version. In addition, Microsoft’s managed code support usually lags behind the “real” DirectX, i.e., the one for C++.

Looking around, I did find an open-source project, SlimDX, that does support 64-bit assemblies for interfacing with DirectX. Interestingly, they claim one AAA game title shipped using SlimDX, but no mention of which. So I asked. They’re keeping the information confidential, which is fine, but the other comment sounds about right: “The large majority of professional commercial PC/console games are still developed in C++ because of the sheer amount of legacy code the studios developing those games have that is already in C++ (and because of the generally poor support from major console vendors for languages other than C or C++, which contributes to lock-in).”

Long and short: it’s C++, baby.